n
个,我们把它们均匀地划分到m
个桶内,k=n/m
个元素。每个桶内部使用快速排序,时间复杂度为O(k * logk)
。m
个桶排序的时间复杂度就是 O(m * k * logk)
,因为 k=n/m
,所以整个桶排序的时间复杂度就是 O(n*log(n/m))
。m
接近数据个数n
时,log(n/m)
就是一个非常小的常量,这个时候桶排序的时间复杂度接近 O(n)
。需求描述:
有10GB的订单数据,需按订单金额(假设金额都是正整数)进行排序
但内存有限,仅几百MB
解决思路:
扫描一遍文件,看订单金额所处数据范围,比如1元-10万元,那么就分100个桶。
第一个桶存储金额1-1000元之内的订单,第二个桶存1001-2000元之内的订单,依次类推。
每个桶对应一个文件,并按照金额范围的大小顺序编号命名(00,01,02,…,99)。
将100个小文件依次放入内存并用快排排序。
所有文件排好序后,只需按照文件编号从小到大依次读取每个小文件并写到大文件中即可。
注意点:若单个文件无法全部载入内存,则针对该文件继续按照前面的思路进行处理即可。
O(n)
。不过,为什么这个排序算法叫“计数”排序呢?“计数”的含义来自哪里呢?
假设只有 8 个考生,分数在 0 到 5 分之间。这 8 个考生的成绩我们放在一个数组 A[8]中,它们分别是:2,5,3,0,2,3,0,3。
考生的成绩从 0 到 5 分,我们使用大小为 6 的数组 C[6]表示桶,其中下标对应分数,不过,C[6]内存储的并不是考生,而是对应的考生个数。像我刚刚举的那个例子,我们只需要遍历一遍考生分数,就可以得到 C[6]的值。
从图中可以看出,分数为 3 分的考生有 3 个,小于 3 分的考生有 4 个,所以,成绩为 3 分的考生在排序之后的有序数组 R[8]中,会保存下标 4,5,6 的位置。
我们对 C[6]数组顺序求和,C[6]存储的数据就变成了下面这样子。C[k]里存储小于等于分数 k 的考生个数。
我们从后到前依次扫描数组 A。比如,当扫描到 3 时,我们可以从数组 C 中取出下标为 3 的值 7,也就是说,到目前为止,包括自己在内,分数小于等于 3 的考生有 7 个,也就是说 3 是数组 R 中的第 7 个元素(也就是数组 R 中下标为 6 的位置)。当 3 放入到数组 R 中后,小于等于 3 的元素就只剩下了 6 个了,所以相应的 C[3]要减 1,变成 6。
以此类推,当我们扫描到第 2 个分数为 3 的考生的时候,就会把它放入数组 R 中的第 6 个元素的位置(也就是下标为 5 的位置)。当我们扫描完整个数组 A 后,数组 R 内的数据就是按照分数从小到大有序排列的了。
// 计数排序,a是数组,n是数组大小。假设数组中存储的都是非负整数。 public void countingSort(int[] a, int n) { if (n <= 1) return; // 查找数组中数据的范围 int max = a[0]; for (int i = 1; i < n; ++i) { if (max < a[i]) { max = a[i]; } } int[] c = new int[max + 1]; // 申请一个计数数组c,下标大小[0,max] for (int i = 0; i <= max; ++i) { c[i] = 0; } // 计算每个元素的个数,放入c中 for (int i = 0; i < n; ++i) { c[a[i]]++; } // 依次累加 for (int i = 1; i <= max; ++i) { c[i] = c[i-1] + c[i]; } // 临时数组r,存储排序之后的结果 int[] r = new int[n]; // 计算排序的关键步骤,有点难理解 for (int i = n - 1; i >= 0; --i) { int index = c[a[i]]-1; r[index] = a[i]; c[a[i]]--; } // 将结果拷贝给a数组 for (int i = 0; i < n; ++i) { a[i] = r[i]; } }
计数排序只能用在数据范围不大的场景中,如果数据范围 k 比要排序的数据 n 大很多,就不适合用计数排序了。而且,计数排序只能给非负整数排序,如果要排序的数据是其他类型的,要将其在不改变相对大小的情况下,转化为非负整数。
解答: 我们假设年龄的范围最小 1 岁,最大不超过 120 岁。我们可以遍历这 100 万用户,根据年龄将其划分到这 120 个桶里,然后依次顺序遍历这 120 个桶中的元素。这样就得到了按照年龄排序的 100 万用户数据。