@
目录http://seatunnel.incubator.apache.org/
https://github.com/apache/incubator-seatunnel
SeaTunnel是一个非常易用的超高性能分布式数据集成平台,在企业中由于开发时间或开发部门不通用往有多个异构的、运行在不同的软硬件平台上的信息系统同时运行;而一个有价值的数据集成是把不同来源、格式、特点性质的数据在逻辑上或物理上有机地集中,从而为企业提供全面的数据共享;SeaTunnel 支持海量数据的实时同步,它每天可以稳定高效地同步数百亿的数据,并已用于近100家公司的生产。最新版本为v2.1.3(作为下一代高性能、分布式、海量数据集成框架)
SeaTunnel 有丰富的连接器且以 Spark 和 Flink 为引擎,所以可以很好地进行分布式的海量数据同步。一般来说使用SeaTunnel作为出仓入仓的工具,或者用于数据集成,主要流程如下:
Source[Data Source Input] -> Transform[Data Processing] -> Sink[Result Output]
数据处理管道由多个滤波器组成,以满足各种数据处理需求,最简单有效就是通过SQL直接构造数据处理管道。目前,SeaTunnel支持的过滤列表还在扩展中。此外,还可以开发自己的数据处理插件,得益于SeaTunnel系统基于插件化设计思想实现的强可扩展性。
连接器在实际开发中的使用直接查找官方对应章节即可
用于转换或过滤插件包括如下:添加校验、转换、日期、删除、Grok、Json、KV、大写、小写、删除、重命名、重分区、替换、样本、拆分、Sql、表、截断、Uuid,自主开发的过滤器插件。详细可查阅官网地址
SeaTunnel将尽力解决在海量数据同步过程中可能遇到的问题:
Seatunnel支持多种安装方式,包括locally本地的二进制安装、docker安装、k8s安装,我们先以locally的方式安装和演示。
# 下载 wget https://dlcdn.apache.org/incubator/seatunnel/2.1.3/apache-seatunnel-incubating-2.1.3-bin.tar.gz # 解压 tar -xvf apache-seatunnel-incubating-2.1.3-bin.tar.gz # 进入目录 cd apache-seatunnel-incubating-2.1.3
在config/seatunnel-env.sh中更改设置;如果使用Spark作为引擎,请更改SPARK_HOME,如果使用Flink,请更改FLINK_HOME默认的话,SPARK_HOME和FLINK_HOME用的都是对应的系统环境变量值,如果没有,使用:-后面的值,按需修改即可。我们本篇示例以Flink为主,在前面关于Flink文章提前设置好FLINK_HOME这个环境变量,这里直接使用即可。
在SeaTunnel中,最重要的是配置文件,可以通过配置文件定制自己的数据同步需求,最大限度地发挥SeaTunnel的潜力。配置文件包含几个部分:env、source、transform、sink;相关模块功能如下描述:
在缩放中运行引擎,本节是关于引擎的,不是SeaTunnel本身,不做过多阐述,Spark和Flink都可以运行在不同类型的集群中,并且可以运行在任何规模的集群中。下面只展示建立在Spark或Flink引擎之上的SeaTunnel的基本用法,如果想扩展引擎集群请参阅Spark或Flink官网文档。
./bin/start-seatunnel-spark.sh \ --master local[4] \ --deploy-mode client \ --config ./config/application.conf
bin/start-seatunnel-flink.sh \ --config config-path # -p 2 specifies that the parallelism of flink job is 2. You can also specify more parameters, use flink run -h to view bin/start-seatunnel-flink.sh \ -p 2 \ --config config-path
bin/start-seatunnel-flink.sh \ -m yarn-cluster \ --config config-path # -ynm seatunnel specifies the name displayed in the yarn webUI as seatunnel, you can also specify more parameters, use flink run -h to view bin/start-seatunnel-flink.sh \ -m yarn-cluster \ -ynm seatunnel \ --config config-path
# cluster mode ./bin/start-seatunnel-spark.sh \ --master mesos://ip:7077 \ --deploy-mode cluster \ --config ./config/application.conf
如何部署Flink可以参考前一篇文章《新一代分布式实时流处理引擎Flink入门实战操作篇]》,在前面文章中部署的是最新版本1.15.1的,超过SeaTunnel官网支持Flink版本范围,因此可选择安装flink1.12.7或flink-1.13.6的版本,安装过程步骤参考之前文章
部署好flink1.12.7或flink-1.13.6的Flink,启动Standalone集群
# 环境变量配置flink得Home目录 export FLINK_HOME=/home/commons/flink-1.12.7 # 进入Flink目录 cd /home/commons/flink-1.12.7 # 启动flink的Standalone集群 ./bin/start-cluster.sh
在config目录下官网提供flink和spark的多个简易配置模板,上一节说到SeaTunnel的连接器是非常丰富的,入门示例就以flink简单流式处理从Socket数据源读取数据,转换后输出到Console控制台,配置模板使用官网提供的flink.streaming.conf.template,创建flink-streaming-test-01.conf,内容如下:
vi config/flink-streaming-test-01.conf
env { # flink 配置 execution.parallelism = 1 #execution.checkpoint.interval = 10000 #execution.checkpoint.data-uri = "hdfs://localhost:9000/checkpoint" } # 配置数据源 source { SocketStream { host = hadoop1 result_table_name = "socket_demo_table" field_name = "info" } } # 配置转换插件 transform { Split{ separator = "#" fields = ["name","age"] } sql { sql = "select info,split(info) from socket_demo_table" } } # 声明输出 sink { ConsoleSink {} }
保存配置内容后,先在hadoop1开一个连接窗口,开启一个netcat服务来发送数据,nc -lk 9999 监听socket端口
# 启动seatunnel ./bin/start-seatunnel-flink.sh \ --config ./config/flink-streaming-test-01.conf
在hadoop1也即是ckserver1监听端口按#分隔输出下面几条数据
访问Flink的控制台UI页面http://hadoop1:8081/ ,找到刚运行的任务的日志,可以看到已经将info字段拆分为name和age两个字段输出
在前面示例使用start-seatunnle-flink.sh可以指定3个参数,分别是
–-config参数用来指定应用配置文件的路径。上面入门的示例也已使用到了。
–variable参数可以向配置文件传值。自从v1.2.4, SeaTunnel支持配置中的变量替换。此特性通常用于定时或非定时脱机处理,以替换时间和日期等变量配置文件内是支持声明变量的,可以通过命令行给配置中的变量赋值,变量声明语法如下:
transform { sql { sql = "select * from user_view where city ='"${city}"' and dt = '"${date}"'" } } ./bin/start-seatunnel-flink.sh \ --config ./config/flink-streaming-test-01.conf \ -i city=shanghai \ -i date=20190319
–-check参数用来检查config语法是否合法。将入门示例故意修改错误格式,在第一行env前面加hello字符串,保存后运行后执行带上--check参数,通过检查出现缺少 env配置的错误提示。
使用前面的入门示例,输出年龄大于指定输出参数年龄的数据,修改transform的sql语句
sql = "select * from (select info,split(info) as info_record from socket_demo_table) where age > '"${age}"'"
保存配置内容后,先在hadoop1开一个连接窗口,开启一个netcat服务来发送数据,nc -lk 9999 监听socket端口
# 启动seatunnel ./bin/start-seatunnel-flink.sh \ --config ./config/flink-streaming-test-01.conf -i age=25
在hadoop1也即是ckserver1监听端口按#分隔输出下面几条数据
访问Flink的控制台UI页面http://hadoop1:8081/ ,找到刚运行的任务的日志,可以看到已经将info字段拆分为name和age两个字段输出
编写配置文件,vi config/flink-streaming-test-02.conf
env { # flink 配置 execution.parallelism = 1 } # 配置数据源 source { KafkaTableStream { consumer.bootstrap.servers = "192.168.5.120:9092,192.168.5.121:9092,192.168.5.122:9092" consumer.group.id = "seatunnel-test" topics = seatunnel-kafka-in result_table_name = test format.type = csv schema = "[{\"field\":\"name\",\"type\":\"string\"},{\"field\":\"age\",\"type\":\"int\"}]" format.field-delimiter = ";" format.allow-comments = "true" format.ignore-parse-errors = "true" } } # 配置转换插件 transform { sql { sql = "select name,age from test where age > '"${age}"'" } } # 声明输出 sink { kafka { topics = "seatunnel-kafka-out" producer.bootstrap.servers = "192.168.5.120:9092,192.168.5.121:9092,192.168.5.122:9092" } }
创建kafka的测试示例的输入和输出的topic
# 如果先创建过可以执行先删除topic,可选 ./kafka-topics.sh --delete --bootstrap-server kafka1:9092,kafka2:9092,kafka3:9092 --topic seatunnel-kafka-in ./kafka-topics.sh --delete --bootstrap-server kafka1:9092,kafka2:9092,kafka3:9092 --topic seatunnel-kafka-out ./kafka-topics.sh --create --bootstrap-server kafka1:9092,kafka2:9092,kafka3:9092 --replication-factor 1 --partitions 3 --topic seatunnel-kafka-in ./kafka-topics.sh --create --bootstrap-server kafka1:9092,kafka2:9092,kafka3:9092 --replication-factor 1 --partitions 3 --topic seatunnel-kafka-out
启动seatunnel
./bin/start-seatunnel-flink.sh --config ./config/flink-streaming-test-02.conf -i age=25
查询Flink的控制台UI页面http://hadoop1:8081/ ,找到刚运行的任务查看其概览可以看到使用Kafka的Source和Sink
kafka生产数据
./kafka-console-producer.sh --broker-list kafka1:9092,kafka2:9092,kafka3:9092 --topic seatunnel-kafka-out
kafka消费数据,结果是正确的
# 消费输出 ./kafka-console-consumer.sh --bootstrap-server kafka1:9092,kafka2:9092,kafka3:9092 --topic seatunnel-kafka-in
-p 2指定flink job的并行度为2,还也可以指定更多的参数,使用flink运行-h查看,
# 将配置文件中env中execution.parallelism注释掉,改为参数传递的方式 # execution.parallelism = 1 # 启动seatunnel ./bin/start-seatunnel-flink.sh --config ./config/flink-streaming-test-02.conf -p 2 -i age=25
访问Flink的控制台UI页面http://hadoop1:8081/ 查看当前job有两个,3个slot使用了2个,可用只剩1个
**本人博客网站 **IT小神 www.itxiaoshen.com