You are given three positive integers: n
, index
, and maxSum
. You want to construct an array nums
(0-indexed) that satisfies the following conditions:
nums.length == n
nums[i]
is a positive integer where 0 <= i < n
.abs(nums[i] - nums[i+1]) <= 1
where 0 <= i < n-1
.maxSum
.nums[index]
is maximized.Return nums[index] of the constructed array.
二分答案。从贪心的角度出发,我们可能构成的序列,必须是以 \(index\) 为中心,然后左右都是等差数列直到 \(1\).
class Solution { private: #define ll long long bool check(ll val, int n, int idx, ll maxSum){ int N_left_to_idx = idx; int N_right_to_end = (n-1)-(idx+1)+1; int AP_series = val-1; // from 1 to val-1 int N_left_ones = 0, N_right_ones = 0; ll leftsum=0, rightsum=0; if(N_left_to_idx>=AP_series){ // can contain the whole AP series leftsum = (val-1)*val/2; N_left_ones = N_left_to_idx - AP_series; } else{ // cannot contain the whole AP series // AP starts from val-1 to val-idx leftsum = N_left_to_idx * (val-1+val-idx)/2; } if(N_right_to_end >= AP_series){ rightsum = (val-1)*val/2; N_right_ones = N_right_to_end - AP_series; } else{ rightsum = N_right_to_end*(val-1+val-N_right_to_end)/2; } return rightsum+leftsum+N_left_ones+N_right_ones+val<=maxSum; } public: int maxValue(int n, int index, ll maxSum) { ll l = 1, r = maxSum; int ans=0; while(l<=r){ ll mid = (r-l)/2+l; if(check(mid, n, index, maxSum)){ ans=mid; l=mid+1; } else r=mid-1; } return ans; } };