BLEU (其全称为Bilingual Evaluation Understudy), 其意思是双语评估替补。所谓Understudy (替补),意思是代替人进行翻译结果的评估。尽管这项指标是为翻译而发明的,但它可以用于评估一组自然语言处理任务生成的文本。
计算公式:
举例:
主流的计算BLEU的python库有nltk和sacrebleu,计算结果的不同源自使用了不同的smooth算法。
from sacrebleu.tokenizers.tokenizer_zh import TokenizerZh from sacrebleu.tokenizers.tokenizer_13a import Tokenizer13a from sacrebleu import BLEU import nltk.translate.bleu_score as nltkbleu def tokenizer(s, lang): if lang == "zh": return TokenizerZh()(s).split(" ") else: return Tokenizer13a()(s).split(" ") def sacre_bleu(refs, pred, n): bleu = BLEU(lowercase=True, tokenize="zh", max_ngram_order=n, effective_order=True) score = bleu.sentence_score(references=refs, hypothesis=pred).score print(score) def nltk_bleu(refs, pred, n): """ 一般smoothing_function选择默认即可; 默认n=4 """ refs = [tokenizer(ref, "zh") for ref in refs] pred = tokenizer(pred, "zh") weights = [1 / n for _ in range(n)] score = nltkbleu.sentence_bleu( refs, pred, smoothing_function=nltkbleu.SmoothingFunction().method7, weights=weights ) print(score) if __name__ == "__main__": s = "你好世界" sacre_bleu([s], s, 4) nltk_bleu([s], s, 4)