权重 ak的确定——频数统计法
选取正整数p的方法
画箱形图 取1/4与3/4的距离(IQR) ceil()取整
代码:
import numpy as np def frequency(matrix,p): ''' 频数统计法确定权重 :param matrix: 因素矩阵 :param p: 分组数 :return: 权重向量 ''' A = np.zeros((matrix.shape[0])) for i in range(0, matrix.shape[0]): ## 根据频率确定频数区间列表 row = list(matrix[i, :]) maximum = max(row) minimum = min(row) gap = (maximum - minimum) / p row.sort() group = [] item = minimum while(item < maximum): group.append([item, item + gap]) item = item + gap print(group) # 初始化一个数据字典,便于记录频数 dataDict = {} for k in range(0, len(group)): dataDict[str(k)] = 0 # 判断本行的每个元素在哪个区间内,并记录频数 for j in range(0, matrix.shape[1]): for k in range(0, len(group)): if(matrix[k, j] >= group[k][0]): dataDict[str(k)] = dataDict[str(k)] + 1 break print(dataDict) # 取出最大频数对应的key,并以此为索引求组中值 index = int(max(dataDict,key=dataDict.get)) mid = (group[index][0] + group[index][1]) / 2 print(mid) A[i] = mid A = A / sum(A[:]) # 归一化 return A
权重 ak的确定——模糊层次分析法
代码:
import numpy as np def AHP(matrix): if isConsist(matrix): lam, x = np.linalg.eig(matrix) return x[0] / sum(x[0][:]) else: print("一致性检验未通过") return None def isConsist(matrix): ''' :param matrix: 成对比较矩阵 :return: 通过一致性检验则返回true,否则返回false ''' n = np.shape(matrix)[0] a, b = np.linalg.eig(matrix) maxlam = a[0].real CI = (maxlam - n) / (n - 1) RI = [0, 0, 0.58, 0.9, 1.12, 1.24, 1.32, 1.41, 1.45] CR = CI / RI[n - 1] if CR < 0.1: return True, CI, RI[n - 1] else: return False, None, None
import numpy as np def appraise(criterionMatrix, targetMatrixs, relationMatrixs): ''' :param criterionMatrix: 准则层权重矩阵 :param targetMatrix: 指标层权重矩阵列表 :param relationMatrixs: 关系矩阵列表 :return: ''' R = np.zeros((criterionMatrix.shape[1], relationMatrixs[0].shape[1])) for index in range(0, len(targetMatrixs)): row = mul_mymin_operator(targetMatrixs[index], relationMatrixs[index]) R[index] = row B = mul_mymin_operator(criterionMatrix, R) return B / sum(B[:]) def mul_mymin_operator(A, R): B = np.zeros(1, R.shape[1]) for column in range(1, R.shape[1]): list = [] for row in range(1, R.shape[0]): list = list.append(A[row] * R[row, column]) B[0, column] = mymin(list) return B def mymin(list): global temp for index in range(1, len(list)): if index == 1: temp = min(1, list[0] + list[1]) else: temp = min(1, temp + list[index]) return temp