本文主要是介绍labelme标准数据并抠图,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
import json
import numpy as np
from labelme import utils
import cv2
import os
def create_file(file):
if not os.path.exists(file):
os.mkdir(file)
def cv_show(name,img):
cv2.imshow(name,img)
cv2.waitKey()
cv2.destroyAllWindows()
def from_mask_extract_ROI(img,mask):
y = np.where(mask==1)[0]
x = np.where(mask==1)[1]
lu_y = min(y)
ld_y = max(y)
ru_x = min(x)
rd_x = max(x)
mask_ROI = mask[lu_y:ld_y+1,ru_x:rd_x+1]
ROI = img[lu_y:ld_y+1,ru_x:rd_x+1]
mask = np.ones_like(ROI)
for i in range(mask.shape[2]):
mask[:,:,i] = mask_ROI
masked_ROI = mask*ROI
channel_reverse = np.ones_like(masked_ROI)
for i in range(channel_reverse.shape[2]):
channel_reverse[:,:,-1-i] = masked_ROI[:,:,i]
return channel_reverse
def from_json_extract_ROI_based_label(file):
file_list = os.listdir(file)
json_file = []
for idx, value in enumerate(file_list):
if value.split('.')[-1] == 'json':
json_name = os.path.join(file, value)
json_file.append(json_name)
for idx, value in enumerate(json_file):
json_name = value
data = json.load(open(json_name))
img = utils.img_b64_to_arr(data['imageData'])
lbl, lbl_name = utils.labelme_shapes_to_label(img.shape, data['shapes'])
mask = []
for i in range(1, len(lbl_name)):
mask.append((lbl == i).astype(np.uint8))
mask = np.transpose(np.asarray(mask, np.uint8), [1, 2, 0])
keys = []
values = []
for value, key in enumerate(lbl_name):
key = key.split('.')[0]
keys.append(key)
values.append(value)
labels = []
for i in range(1, len(values)):
labels.append(keys[i])
for i in range(mask.shape[2]):
a = mask[:, :, i]
masked_ROI_ChannelRevrse = from_mask_extract_ROI(img=img,mask=a)
save_file = str(labels[i])
create_file(save_file)
save_ROI = './' + save_file + '/' + json_name.split('/')[-1].split('.json')[0] + '.' + str(i) + '.jpg'
cv2.imwrite(save_ROI, masked_ROI_ChannelRevrse)
from_json_extract_ROI_based_label(file='./test/')
这篇关于labelme标准数据并抠图的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!