金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”。今天一早金明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的NN元。于是,他把每件物品规定了一个重要度,分为55等:用整数1-51−5表示,第55等最重要。他还从因特网上查到了每件物品的价格(都是整数元)。他希望在不超过NN元(可以等于NN元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第jj件物品的价格为v[j]v[j],重要度为w[j]w[j],共选中了kk件物品,编号依次为j_1,j_2,…,j_kj1,j2,…,jk,则所求的总和为:
v[j_1] \times w[j_1]+v[j_2] \times w[j_2]+ …+v[j_k] \times w[j_k]v[j1]×w[j1]+v[j2]×w[j2]+…+v[jk]×w[jk]。
请你帮助金明设计一个满足要求的购物单。
第一行,为22个正整数,用一个空格隔开:n,mn,m(其中N(<30000)N(<30000)表示总钱数,m(<25)m(<25)为希望购买物品的个数。)
从第22行到第m+1m+1行,第jj行给出了编号为j-1j−1的物品的基本数据,每行有22个非负整数v pvp(其中vv表示该物品的价格(v \le 10000)(v≤10000),pp表示该物品的重要度(1-51−5)
11个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<100000000)(<100000000)。
#include <bits/stdc++.h> using namespace std; int v[26]; int p[26]; int a[26][30001]; int main() { int n,m; cin>>n>>m; for(int y=1;y<=m;++y) { cin>>v[y]>>p[y]; p[y]=p[y]*v[y]; } for(int i=1;i<=m;++i) { for(int j=1;j<=n;++j) { if(j<v[i]) { a[i][j]=a[i-1][j]; } else { a[i][j]=max(a[i-1][j],a[i-1][j-v[i]]+p[i]); } } } cout<<a[m][n]; return 0; }