Java教程

Kafka-java代码向kafka中输入和消费数据

本文主要是介绍Kafka-java代码向kafka中输入和消费数据,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

Kafka-java

1. 在写代码前需要导入依赖

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka</artifactId>
            <version>${flink.version}</version>
        </dependency>

2. 使用java代码从kafka中拿数据

package com.wt.flink.scurce
import org.apache.flink.api.common.eventtime.WatermarkStrategy
import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.connector.kafka.source.KafkaSource
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer
import org.apache.flink.streaming.api.scala._

object Demo5KafkaSource {
  def main(args: Array[String]): Unit = {
    //创建flink的环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

    /**
     * 构建kafka source
     */

    val source: KafkaSource[String] = KafkaSource
      .builder[String]
      .setBootstrapServers("master:9092,node1:9092,node2:9092") //kafka集群broker列表
      .setTopics("test_topic2")                                 //指定topic
      .setGroupId("my_group")                                   //指定消费组,一条数据指能在一个组内只能被消费一次
      .setStartingOffsets(OffsetsInitializer.earliest())        //读取数据的位置,earliest:读取所有的数据,latest:读取最新的数据
      .setValueOnlyDeserializer(new SimpleStringSchema())       //反序列的类
      .build()

    //使用kafka source
    val kafkaDS: DataStream[String] = env.fromSource(source,WatermarkStrategy.noWatermarks(),"kafka Source")

    kafkaDS.print()

    env.execute()
  }
}

3. 用java代码向kafka中打入数据

package com.wt.flink.kafka

import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}

import java.util.Properties

object Demo1KafkaProducer {
  def main(args: Array[String]): Unit = {
    /**
     * 1. 创建生产者
     *
     */
    val properties = new Properties()

    //指定kafka broker的地址
    properties.setProperty("bootstrap.servers", "master:9092,node2:9092,node2:9092")

    //设置key 和 value的序列化的类
    properties.setProperty("key.serializer","org.apache.kafka.common.serialization.StringSerializer")
    properties.setProperty("value.serializer","org.apache.kafka.common.serialization.StringSerializer")


    val producer = new KafkaProducer[String, String](properties)

    val record = new ProducerRecord[String, String]("test_topic2", "woaini,zhongguo")

    //发送数据到kafka中
    producer.send(record)
    producer.flush()

    //关闭连接
    producer.close()
  }
}

4. 向kafka中批量打入学生数据

package com.wt.flink.kafka
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}
import java.util.Properties
import scala.io.Source

object Demo2StudentToKafka {
  def main(args: Array[String]): Unit = {
    /**
     * 创建生产者
     *
      */
    val properties = new Properties()

    //指定kafka broker 的地址
    //指定kafka broker地址
    properties.setProperty("bootstrap.servers", "master:9092,node2:9092,node2:9092")

    //设置key 和value的序列化类
    properties.setProperty("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
    properties.setProperty("value.serializer", "org.apache.kafka.common.serialization.StringSerializer")

    val producer = new KafkaProducer[String, String](properties)

    /**
     * 将学生表数据批量写到kafka中
     *
     */
    val studentList: List[String] = Source.fromFile("data/students.txt").getLines().toList

    //发送数据到kafka中
    for (student <- studentList) {
      val record = new ProducerRecord[String, String]("student", student)

      producer.send(record)
      producer.flush()
    }
      producer.close()
  }
}

5. 在kafka中批量拿数据

package com.wt.flink.kafka
import org.apache.kafka.clients.consumer.{ConsumerRecord, ConsumerRecords, KafkaConsumer}

import java.time.Duration
import java.util.Properties
import java.{lang, util}

object Demo3KafkaConsumer {
  def main(args: Array[String]): Unit = {
    /**
     * 1. 创建消费者
     *
      */
    val properties = new Properties()

    properties.setProperty("bootstrap.servers", "master:9092,node2:9092,node2:9092")

    //key 和value 反序列化的类
    properties.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
    properties.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")

    /**
     * earliest
     * 当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,从头开始消费
     * latest  默认
     * 当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,消费新产认值生的该分区下的数据
     * none
     * topic各分区都存在已提交的offset时,从offset后开始消费;只要有一个分区不存在已提交的offset,则抛出异常
     *
     */

    properties.setProperty("auto.offset.reset","earliest")

    //消费者组
    properties.setProperty("group.id","suibian_mingzi")

    val consumer = new KafkaConsumer[String, String](properties)

    /**
     * 2. 订阅一个 topic, 可以一次定义多个topic
     *
     */
    val topics = new util.ArrayList[String]()
    topics.add("student")
    consumer.subscribe(topics)

    while (true) {
      println("正在消费")

      /**
       * 消费数据,这需要设置一个超时时间
       *
       */
      val consumerRecords: ConsumerRecords[String, String] = consumer
        .poll(Duration.ofSeconds(2))

      //解析数据
      val records: lang.Iterable[ConsumerRecord[String, String]] = consumerRecords.records("student")

      val iterRecord: util.Iterator[ConsumerRecord[String, String]] = records.iterator()

      while (iterRecord.hasNext) {
        //获取一行数据
        val record: ConsumerRecord[String, String] = iterRecord.next()

        val topic: String = record.topic() //topic
        val offset: Long = record.offset() //数据偏移量
        val key: String = record.key() //数据的key,默认情况下没有指定的的话为null
        val value: String = record.value() //保存数据
        val ts: Long = record.timestamp() //时间戳,默认存入的时间

        println(s"$topic\t$offset\t$key\t$value\t$ts")

      }
    }
    //关闭连接
    consumer.close()
  }
}
这篇关于Kafka-java代码向kafka中输入和消费数据的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!