1. >>> import redis 2. 3. >>> conn = redis.Redis(host='192.168.8.176',port=6379) 4. 5. >>> pipe = conn.pipeline() 6. 7. >>> pipe.hset("hash_key","leizhu900516",8) 8. Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>> 9. 10. >>> pipe.hset("hash_key","chenhuachao",9) 11. Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>> 12. 13. >>> pipe.hset("hash_key","wanger",10) 14. Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>> 15. 16. >>> pipe.execute() 17. [1L, 1L, 1L] >>>
1. >>> pipe.hget("hash_key","leizhu900516") 2. Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>> 3. 4. >>> pipe.hget("hash_key","chenhuachao") 5. Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>> 6. 7. >>> pipe.hget("hash_key","wanger") 8. Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>> 9. 10. >>> result = pipe.execute() 11. 12. >>> print result 13. ['8', '9', '10'] #有序的列表 14. >>>
3.###生产环境批量读写
总结:redis的pipeline就是这么简单,实际生产环境,
根据需要去编写相应的代码,思路同理。如下:
1. redis_db = redis.Redis(host='127.0.0.1',port=6379) 2. data = ['zhangsan', 'lisi', 'wangwu'] 3. 4. with redis_db.pipeline(transaction=False) as pipe: 5. for i in data: 6. pipe.zscore(self.key, i) 7. 8. result = pipe.execute() 9. 10. print result 11. # [100, 80, 78]
线上的redis一般都是集群模式,集群模式下使用pipeline的时候,在创建pipeline的对象时,需要指定
pipe =conn.pipeline(transaction=False)
经过线上实测,利用pipeline取值3500条数据,大约需要900ms,如果配合线程or协程来使用,每秒返回1W数据是没有问题的,基本能满足大部分业务。