Java教程

【算法】基数排序

本文主要是介绍【算法】基数排序,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

基数排序的发明可以追溯到1887年赫尔曼·何乐礼在打孔卡片制表机(Tabulation Machine),排序器每次只能看到一个列。它是基于元素值的每个位上的字符来排序的。对于数字而言就是分别基于个位,十位,百位或千位等等数字来排序。

基数排序(Radix sort)是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。

一、基本思想

它是这样实现的:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。

基数排序按照优先从高位或低位来排序有两种实现方案:

  • MSD(Most significant digital)从最左侧高位开始进行排序。先按k1排序分组,同一组中记录,关键码k1相等,再对各组按k2排序分成子组,之后,对后面的关键码继续这样的排序分组,直到按最次位关键码kd对各子组排序后。再将各组连接起来,便得到一个有序序列。MSD方式适用于位数多的序列
  • LSD(Least significant digital)从最右侧低位开始进行排序。先从kd开始排序,再对kd-1进行排序,依次重复,直到对k1排序后便得到一个有序序列。LSD方式适用于位数少的序列

radix-sort_sample.gif基数排序LSD动图演示

二、算法描述

我们以LSD为例,从最低位开始,具体算法描述如下:

①. 取得数组中的最大数,并取得位数;
②. arr为原始数组,从最低位开始取每个位组成radix数组;
③. 对radix进行计数排序(利用计数排序适用于小范围数的特点);

三、代码实现

基数排序:通过序列中各个元素的值,对排序的N个元素进行若干趟的“分配”与“收集”来实现排序。

  • 分配:我们将L[i]中的元素取出,首先确定其个位上的数字,根据该数字分配到与之序号相同的桶中
  • 收集:当序列中所有的元素都分配到对应的桶中,再按照顺序依次将桶中的元素收集形成新的一个待排序列L[]。对新形成的序列L[]重复执行分配和收集元素中的十位、百位…直到分配完该序列中的最高位,则排序结束
/**
 * 基数排序(LSD从低位开始)
 *
 * 基数排序适用于:
 *  (1)数据范围较小,建议在小于1000
 *  (2)每个数值都要大于等于0
 *
 * ①. 取得数组中的最大数,并取得位数;
 * ②. arr为原始数组,从最低位开始取每个位组成radix数组;
 * ③. 对radix进行计数排序(利用计数排序适用于小范围数的特点);
 * @param arr	待排序数组
 */
public static void radixSort(int[] arr){
    if(arr.length <= 1) return;

    //取得数组中的最大数,并取得位数
    int max = 0;
    for(int i = 0; i < arr.length; i++){
        if(max < arr[i]){
            max = arr[i];
        }
    }
    int maxDigit = 1;
    while(max / 10 > 0){
        maxDigit++;
        max = max / 10;
    }
    System.out.println("maxDigit: " + maxDigit);

    //申请一个桶空间
    int[][] buckets = new int[10][arr.length];
    int base = 10;

    //从低位到高位,对每一位遍历,将所有元素分配到桶中
    for(int i = 0; i < maxDigit; i++){
        int[] bktLen = new int[10];        //存储各个桶中存储元素的数量
        
        //分配:将所有元素分配到桶中
        for(int j = 0; j < arr.length; j++){
            int whichBucket = (arr[j] % base) / (base / 10);
            buckets[whichBucket][bktLen[whichBucket]] = arr[j];
            bktLen[whichBucket]++;
        }

        //收集:将不同桶里数据挨个捞出来,为下一轮高位排序做准备,由于靠近桶底的元素排名靠前,因此从桶底先捞
        int k = 0;
        for(int b = 0; b < buckets.length; b++){
            for(int p = 0; p < bktLen[b]; p++){
                arr[k++] = buckets[b][p];
            }
        }

        System.out.println("Sorting: " + Arrays.toString(arr));
        base *= 10;
    }
}

以下是基数排序算法复杂度,其中k为最大数的位数:

平均时间复杂度 最好情况 最坏情况 空间复杂度
O(d*(n+r)) O(d*(n+r)) O(d*(n+r)) O(n+r)

其中,d为位数,r为基数,n为原数组个数。在基数排序中,因为没有比较操作,所以在复杂上,最好的情况与最坏的情况在时间上是一致的,均为O(d*(n + r))

基数排序更适合用于对时间,字符串等这些整体权值未知的数据进行排序。

Tips:基数排序不改变相同元素之间的相对顺序,因此它是稳定的排序算法。

基数排序 vs 计数排序 vs 桶排序

这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:

  1. 基数排序:根据键值的每位数字来分配桶
  2. 计数排序:每个桶只存储单一键值
  3. 桶排序:每个桶存储一定范围的数值
这篇关于【算法】基数排序的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!