我只知道容斥不知道二项式反演。
反演,顾名思义就是有两个函数 \(f,g\),知道 \(f\) 用 \(g\) 表示后反过来 \(g\) 用 \(f\) 表示。
二项式反演有一个无敌对称的柿子:
\[f(n)=\sum_{i=1}^n(-1)^i\binom{n}{i}g(i)\iff g(n)=\sum_{i=1}^n(-1)^i\binom{n}{i}f(i) \]这个柿子可以拓展到高维的情况,我们拿二维举例子:
\[f(n,m)=\sum_{i=1}^n(-1)^i\binom{n}{i}g(i)\iff g(n,m)=\sum_{i=1}^n(-1)^i\binom{n}{i}f(i) \]虽然这个对称柿子不常用,但是可以推导到常用的柿子:
设 \(h(i)=\)