本文主要是介绍flink 流的合并,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
flink 流的合并操作
- union
union只能合并类型相同的数据,合并的结果仍然是DataStream,结果操作与未合并之前一致。
public static void main(String[] args) throws Exception {
//流的合并操作 union 只能合并类型相同的流
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStreamSource<String> ds1 = env.fromElements("night", "Jim", "Mary");
DataStreamSource<String> ds2 = env.fromElements("四川", "北京", "上海");
DataStream<String> union = ds1.union(ds2);
union.print();
env.execute();
}
11> 北京
9> Mary
12> 上海
8> Jim
7> night
10> 四川
- connect
connect可以连接不同类型的流,后续的处理api也有类似的不同,下列是一个tuple2与Long类型的流合并的结果,做了一个keyBy之后,在map的操作,map的实现接口是CoMapFunction
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStreamSource<Tuple2<String, String>> ds1 = env.fromElements(Tuple2.of("四川", "成都"), Tuple2.of("北京", "朝阳"), Tuple2.of("广东", "深圳"),Tuple2.of("四川", "成都"));
DataStreamSource<Long> ds2 = env.fromElements(1L, 2L, 3L,2L);
ConnectedStreams<Tuple2<String, String>, Long> connect = ds1.connect(ds2);
connect.keyBy(data -> data.f0,data -> data).map(new CoMapFunction<Tuple2<String, String>, Long, String>() {
//
@Override
public String map1(Tuple2<String, String> stringStringTuple2) throws Exception {
return "this is tuple" + stringStringTuple2;
}
@Override
public String map2(Long aLong) throws Exception {
return "this is number" + aLong;
}
}).print();
env.execute();
6> this is tuple(广东,深圳)
7> this is tuple(北京,朝阳)
15> this is number3
16> this is tuple(四川,成都)
11> this is number1
16> this is number2
16> this is tuple(四川,成都)
16> this is number2
这篇关于flink 流的合并的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!