实验结果:
源代码:
import numpy as np import matplotlib.pyplot as plt def load_data(filename): # 载入数据 xys = [] with open(filename, 'r') as f: for line in f: xys.append(map(float, line.strip().split())) xs, ys = zip(*xys) return np.asarray(xs), np.asarray(ys) def identity_basis(x): ret = np.expand_dims(x, axis=1) # x原先为1维(只有轴axis=0)的数组,使用expand_dims扩展出1维(扩展出轴axis=1) return ret def main(x_train, y_train): # 训练模型,并返回从x到y的映射。 basis_func = identity_basis # shape(N, 1)的函数 phi0 = np.expand_dims(np.ones_like(x_train), axis=1) # shape(N,1)大小的全1 array phi1 = basis_func(x_train) # 将x_train的shape转换为(N, 1) phi = np.concatenate([phi0, phi1], axis=1) # phi.shape=(300,2) phi是增广特征向量的转置 print("phi shape = ", phi.shape) # 使用最小二乘法优化w w = np.dot(np.linalg.pinv(phi), y_train) # np.linalg.pinv(phi)求phi的伪逆矩阵(phi不是列满秩) w.shape=[2,1] print("参数 w = ", w) def f(x): phi0 = np.expand_dims(np.ones_like(x), axis=1) phi1 = basis_func(x) phi = np.concatenate([phi0, phi1], axis=1) y = np.dot(phi, w) # 矩阵乘法 return y return f def evaluate(ys, ys_pred): # 评估模型 std = np.sqrt(np.mean(np.abs(ys - ys_pred) ** 2)) return std if __name__ == '__main__': # 程序主入口(建议不要改动以下函数的接口) train_file = 'train.txt' test_file = 'test.txt' # 载入数据 x_train, y_train = load_data(train_file) x_test, y_test = load_data(test_file) print("x_train shape:", x_train.shape) print("x_test shape:", x_test.shape) # 训练模型,返回一个函数f()使得 y = f(x) f = main(x_train, y_train) y_train_pred = f(x_train) # 训练集 预测值 std = evaluate(y_train, y_train_pred) # 使用训练集评估模型 print('训练集 预测值与真实值的标准差:{:.1f}'.format(std)) y_test_pred = f(x_test) # 测试集 预测值 std = evaluate(y_test, y_test_pred) # 使用测试集评估模型 print('测试集 预测值与真实值的标准差:{:.1f}'.format(std)) # 显示结果 # plt.plot(x_train, y_train, 'r.') # 训练集 plt.plot(x_test, y_test, 'b.') # 测试集 plt.plot(x_test, y_test_pred, 'k.') # 测试集 的 预测值 plt.xlabel('x') plt.ylabel('y') plt.title('Linear Regression') plt.legend(['train', 'test', 'pred']) plt.show()