Java教程

7、Spark SQL

本文主要是介绍7、Spark SQL,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

1.请分析SparkSQL出现的原因,并简述SparkSQL的起源与发展。

spark产生:为了替代Mapreduce,解决Mapreduce计算短板

    随着Spark的发展,Shark对于Hive的太多依赖(如采用Hive的语法解析器、查询优化器等等),制约了Spark的One Stack Rule Them All的既定方针,制约了Spark各个组件的相互集成,所以提出了SparkSQL项目。SparkSQL抛弃原有Shark的代码,汲取了Shark的一些优点,如内存列存储(In-Memory Columnar Storage)、Hive兼容性等,重新开发了SparkSQL代码;由于摆脱了对Hive的依赖性,SparkSQL无论在数据兼容、性能优化、组件扩展方面都得到了极大的方便。

2. 简述RDD 和DataFrame的联系与区别?

      在Spark中,DataFrame是一种以RDD为基础的分布式数据集,因此DataFrame可以完成RDD的绝大多数功能,在开发使用时,也可以调用方法将RDD和DataFrame进行相互转换。DataFrame的结构类似于传统数据库的二维表格,并且可以从很多数据源中创建,例如结构化文件、外部数据库、Hive表等数据源。

     总的来说,DataFrame除了提供比RDD更丰富的算子以外,更重要的特点是提升Spark框架执行效率、减少数据读取时间以及优化执行计划。有了DataFrame这个更高层次的抽象后,处理数据就更加简单了,甚至可以直接用SQL来处理数据,这对于开发者来说,易用性有了很大的提升。不仅如此,通过DataFrame API或SQL处理数据,Spark 优化器(Catalyst)会自动优化,即使我们写的程序或SQL不高效,程序也可以高效的执行。

3.DataFrame的创建

spark.read.text(url)

spark.read.json(url)

spark.read.format("text").load("people.txt")

spark.read.format("json").load("people.json")

 

 4. PySpark-DataFrame各种常用操作

打印数据 df.show()默认打印前20条数据

打印概要 df.printSchema()

查询总行数 df.count()

 

df.head(3) #list类型,list中每个元素是Row类

 

输出全部行 df.collect() #list类型,list中每个元素是Row类

 

查询概况 df.describe().show()

取列 df[‘name’] df.name

 

基于spark.sql的操作:

创建临时表虚拟表 df.registerTempTable('people')

spark.sql执行SQL语句 spark.sql('select name from people').show()

 

 

5. Pyspark中DataFrame与pandas中DataFrame

分别从文件创建DataFrame

比较两者的异同

Pyspark的DataFrame 是基于 RDD 的一种数据类型,具有比 RDD 节省空间和更高运算效率的优点。pandas的DataFrame 是一种表格型数据结构,按照列结构存储,它含有一组有序的列,每列可以是不同的值,但每一列只能有一种数据类型。

pandas中DataFrame 是可变的,pyspark中RDDs 是不可变的,因此 DataFrame 也是不可变的

pandas中所以是自动创建的,pyspark中没有 index 索引,若需要需要额外创建该列

pandas的是Series 结构,属于 Pandas DataFrame 结构,pyspark的是Row 结构,属于 Spark DataFrame 结构

 

pandas中DataFrame转换为Pyspark中DataFrame

Pyspark中DataFrame转换为pandas中DataFrame

6.从RDD转换得到DataFrame

6.1 利用反射机制推断RDD模式

创建RDD sc.textFile(url).map(),读文件,分割数据项

每个RDD元素转换成 Row

由Row-RDD转换到DataFrame

6.2 使用编程方式定义RDD模式

#下面生成“表头” 

#下面生成“表中的记录” 

#下面把“表头”和“表中的记录”拼装在一起

7. DataFrame的保存

df.write.text(dir)

df.write.json(dri)

df.write.format("text").save(dir)

df.write.format("json").save(dir)

 

 

 

这篇关于7、Spark SQL的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!