风玫瑰是由气象学家用于给出如何风速和风向在特定位置通常分布的简明视图的图形工具。它也可以用来描述空气质量污染源。
风玫瑰工具使用Matplotlib作为后端。
安装方式直接使用pip install windrose
Python学习交流Q群:906715085#### import pandas as pd import numpy as np from matplotlib import pyplot as plt import matplotlib.cm as cm from math import pi import windrose from windrose import WindroseAxes, WindAxes, plot_windrose from mpl_toolkits.axes_grid1.inset_locator import inset_axes import cartopy.crs as ccrs import cartopy.io.img_tiles as cimgt
df = pd.read_csv("./sample_wind_poitiers.csv", parse_dates=['Timestamp']) df = df.set_index('Timestamp')
df['speed_x'] = df['speed'] * np.sin(df['direction'] * pi / 180.0) df['speed_y'] = df['speed'] * np.cos(df['direction'] * pi / 180.0)
fig, ax = plt.subplots(figsize=(8, 8), dpi=80) x0, x1 = ax.get_xlim() y0, y1 = ax.get_ylim() ax.set_aspect(abs(x1-x0)/abs(y1-y0)) ax.set_aspect('equal') ax.scatter(df['speed_x'], df['speed_y'], alpha=0.25) df.plot(kind='scatter', x='speed_x', y='speed_y', alpha=0.05, ax=ax) Vw = 80 ax.set_xlim([-Vw, Vw]) ax.set_ylim([-Vw, Vw])
ax = WindroseAxes.from_ax() ax.bar(df.direction.values, df.speed.values, bins=np.arange(0.01,10,1), cmap=cm.hot, lw=3) ax.set_legend()
ax = WindroseAxes.from_ax() ax.box(df.direction.values, df.speed.values, bins=np.arange(0.01,10,1), cmap=cm.hot, lw=3) ax.set_legend()
plot_windrose(df, kind='contour', bins=np.arange(0.01,8,1), cmap=cm.hot, lw=3)
def plot_month(df, t_year_month, *args, **kwargs): by = 'year_month' df[by] = df.index.map(lambda dt: (dt.year, dt.month)) df_month = df[df[by] == t_year_month] ax = plot_windrose(df_month, *args, **kwargs) return ax plot_month(df, (2014, 7), kind='contour', bins=np.arange(0, 10, 1), cmap=cm.hot)
plot_month(df, (2014, 8), kind='contour', bins=np.arange(0, 10, 1), cmap=cm.hot)
plot_month(df, (2014, 9), kind='contour', bins=np.arange(0, 10, 1), cmap=cm.hot)
bins = np.arange(0,30+1,1) bins = bins[1:] plot_windrose(df, kind='pdf', bins=np.arange(0.01,30,1),normed=True)
proj = ccrs.PlateCarree() fig = plt.figure(figsize=(12, 6)) minlon, maxlon, minlat, maxlat = (6.5, 7.0, 45.85, 46.05) main_ax = fig.add_subplot(1, 1, 1, projection=proj) main_ax.set_extent([minlon, maxlon, minlat, maxlat], crs=proj) main_ax.gridlines(draw_labels=True) main_ax.add_wms(wms='http://vmap0.tiles.osgeo.org/wms/vmap0',layers=['basic']) cham_lon, cham_lat = (6.8599, 45.9259) passy_lon, passy_lat = (6.7, 45.9159) wrax_cham = inset_axes(main_ax, width=1, height=1, loc='center', bbox_to_anchor=(cham_lon, cham_lat), bbox_transform=main_ax.transData, axes_class=windrose.WindroseAxes, ) height_deg = 0.1 wrax_passy = inset_axes(main_ax, width="100%", height="100%", bbox_to_anchor=(passy_lon-height_deg/2, passy_lat-height_deg/2, height_deg, height_deg), bbox_transform=main_ax.transData, axes_class=windrose.WindroseAxes, ) wrax_cham.bar(df.direction.values, df.speed.values,bins=np.arange(0.01,10,1), lw=3) wrax_passy.bar(df.direction.values, df.speed.values,bins=np.arange(0.01,10,1), lw=3) for ax in [wrax_cham, wrax_passy]: ax.tick_params(labelleft=False, labelbottom=False)
最后
这样绘制出来的风玫瑰看起来还是很漂亮的,并且也能够大大提高工作效率,对于那些科研人员是很有帮助的。代码以及图片效
果就放在上面了。