from osgeo import gdal from osgeo import osr import numpy as np def getSRSPair(dataset): ''' 获得给定数据的投影参考系和地理参考系 :param dataset: GDAL地理数据 :return: 投影参考系和地理参考系 ''' prosrs = osr.SpatialReference() prosrs.ImportFromWkt(dataset.GetProjection()) geosrs = prosrs.CloneGeogCS() return prosrs, geosrs def geo2lonlat(dataset, x, y): ''' 将投影坐标转为经纬度坐标(具体的投影坐标系由给定数据确定) :param dataset: GDAL地理数据 :param x: 投影坐标x :param y: 投影坐标y :return: 投影坐标(x, y)对应的经纬度坐标(lon, lat) ''' prosrs, geosrs = getSRSPair(dataset) ct = osr.CoordinateTransformation(prosrs, geosrs) coords = ct.TransformPoint(x, y) return coords[:2] def lonlat2geo(dataset, lon, lat): ''' 将经纬度坐标转为投影坐标(具体的投影坐标系由给定数据确定) :param dataset: GDAL地理数据 :param lon: 地理坐标lon经度 :param lat: 地理坐标lat纬度 :return: 经纬度坐标(lon, lat)对应的投影坐标 ''' prosrs, geosrs = getSRSPair(dataset) ct = osr.CoordinateTransformation(geosrs, prosrs) coords = ct.TransformPoint(lon, lat) return coords[:2] def imagexy2geo(dataset, row, col): ''' 根据GDAL的六参数模型将影像图上坐标(行列号)转为投影坐标或地理坐标(根据具体数据的坐标系统转换) :param dataset: GDAL地理数据 :param row: 像素的行号 :param col: 像素的列号 :return: 行列号(row, col)对应的投影坐标或地理坐标(x, y) ''' trans = dataset.GetGeoTransform() px = trans[0] + col * trans[1] + row * trans[2] py = trans[3] + col * trans[4] + row * trans[5] return px, py def geo2imagexy(dataset, x, y): ''' 根据GDAL的六 参数模型将给定的投影或地理坐标转为影像图上坐标(行列号) :param dataset: GDAL地理数据 :param x: 投影或地理坐标x :param y: 投影或地理坐标y :return: 影坐标或地理坐标(x, y)对应的影像图上行列号(row, col) ''' trans = dataset.GetGeoTransform() a = np.array([[trans[1], trans[2]], [trans[4], trans[5]]]) b = np.array([x - trans[0], y - trans[3]]) return np.linalg.solve(a, b) # 使用numpy的linalg.solve进行二元一次方程的求解