通过之前一篇文章 无需编程,基于PostgreSQL零代码生成CRUD增删改查RESTful API接口 的介绍,采用抽象工厂设计模式,已经支持了大象数据库PostgreSQL。之前通过字符串拼接生成DDL SQL语句,比较繁琐。本文开始,引入了FreeMarker模版引擎,通过配置模版实现创建和修改物理表结构SQL语句,简化了大量代码,提高了效率,并且通过配置oracle数据库SQL模版,基于oracle数据库,零代码实现crud增删改查。
FreeMarker是一款模板引擎: 即一种基于模板和要改变的数据,并用来生成输出文本(HTML网页,电子邮件,配置文件,源代码等)的通用工具。 它不是面向最终用户的,而是一个Java类库,是一款程序员可以嵌入他们所开发产品的组件。模板编写为FreeMarker Template Language (FTL)。它是简单的,专用的语言, 不是像PHP那样成熟的编程语言。 那就意味着要准备数据在真实编程语言中来显示,比如数据库查询和业务运算,之后模板显示已经准备好的数据。在模板中,你可以专注于如何展现数据,而在模板之外可以专注于要展示什么数据。
通过产品对象为例,无需编程,基于Oracle数据库,通过配置零代码实现CRUD增删改查RESTful API接口和管理UI。
创建产品
编辑产品数据
产品数据列表
通过Oracle SQL Developer查询Oracle数据
元数据表ca_meta_table,用于记录表的基本信息。
TableEntity为“元数据表”对象,和ca_meta_table字段对应
public class TableEntity { private Long id; private String name; private String caption; private String description; private Timestamp createdDate; private Timestamp lastModifiedDate; private String pluralName; private String tableName; private EngineEnum engine; private Boolean createPhysicalTable; private Boolean reverse; private Boolean systemable; private Boolean readOnly; private List<ColumnEntity> columnEntityList; private List<IndexEntity> indexEntityList; }
元数据列ca_meta_column,用于记录表字段信息,比如类型,长度,默认值等。
ColumnEntity为“元数据列”对象,和ca_meta_column字段对应
public class ColumnEntity { private Long id; private String name; private String caption; private String description; private Timestamp createdDate; private Timestamp lastModifiedDate; private Integer displayOrder; private DataTypeEnum dataType; private IndexTypeEnum indexType; private IndexStorageEnum indexStorage; private String indexName; private Integer length; private Integer precision; private Integer scale; private String defaultValue; private Long seqId; private Boolean unsigned; private Boolean autoIncrement; private Boolean nullable; private Boolean insertable; private Boolean updatable; private Boolean queryable; private Boolean displayable; private Boolean systemable; private Long tableId; }
元数据索引ca_meta_index,用于记录表联合索引信息,比如索引类型,名称等。
IndexEntity为“元数据索引”对象,和ca_meta_index字段对应
public class IndexEntity { private Long id; private String name; private String caption; private String description; private Timestamp createdDate; private Timestamp lastModifiedDate; private IndexTypeEnum indexType; private IndexStorageEnum indexStorage; private Long tableId; private List<IndexLineEntity> indexLineEntityList; }
元数据索引行ca_meta_index_line,用于记录表联合索引行信息,一个联合索引可以对应多个联合索引行,表示由多个字段组成。
IndexLineEntity“元数据索行”对象,和ca_meta_index_line字段对应
public class IndexLineEntity { private Long id; private Long columnId; private ColumnEntity columnEntity; private Long indexId; }
CREATE TABLE "${tableName}" ( <#list columnEntityList as columnEntity> <#if columnEntity.dataType == "BOOL"> "${columnEntity.name}" NUMBER(1)<#if columnEntity.defaultValue??> DEFAULT <#if columnEntity.defaultValue == "true">1<#else>0</#if></#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if> <#elseif columnEntity.dataType == "INT"> "${columnEntity.name}" INT<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity.indexType?? && columnEntity.indexType == "PRIMARY"> PRIMARY KEY</#if><#if columnEntity_has_next>,</#if> <#elseif columnEntity.dataType == "BIGINT"> "${columnEntity.name}" INT<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity.indexType?? && columnEntity.indexType == "PRIMARY"> PRIMARY KEY</#if><#if columnEntity_has_next>,</#if> <#elseif columnEntity.dataType == "FLOAT"> "${columnEntity.name}" FLOAT<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if> <#elseif columnEntity.dataType == "DOUBLE"> "${columnEntity.name}" REAL<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if> <#elseif columnEntity.dataType == "DECIMAL"> "${columnEntity.name}" DECIMAL<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if> <#elseif columnEntity.dataType == "DATE"> "${columnEntity.name}" DATE<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if> <#elseif columnEntity.dataType == "TIME"> "${columnEntity.name}" CHAR(8)<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if> <#elseif columnEntity.dataType == "DATETIME"> "${columnEntity.name}" DATE<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if> <#elseif columnEntity.dataType == "TIMESTAMP"> "${columnEntity.name}" TIMESTAMP<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if> <#elseif columnEntity.dataType == "CHAR"> "${columnEntity.name}" CHAR(${columnEntity.length})<#if columnEntity.defaultValue??> DEFAULT '${columnEntity.defaultValue}'</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity.indexType?? && columnEntity.indexType == "PRIMARY"> PRIMARY KEY</#if><#if columnEntity_has_next>,</#if> <#elseif columnEntity.dataType == "VARCHAR"> "${columnEntity.name}" VARCHAR(${columnEntity.length})<#if columnEntity.defaultValue??> DEFAULT '${columnEntity.defaultValue}'</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity.indexType?? && columnEntity.indexType == "PRIMARY"> PRIMARY KEY</#if><#if columnEntity_has_next>,</#if> <#elseif columnEntity.dataType == "PASSWORD"> "${columnEntity.name}" VARCHAR(200)<#if columnEntity.defaultValue??> DEFAULT '${columnEntity.defaultValue}'</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if> <#elseif columnEntity.dataType == "ATTACHMENT"> "${columnEntity.name}" VARCHAR(4000)<#if columnEntity.defaultValue??> DEFAULT '${columnEntity.defaultValue}'</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if> <#elseif columnEntity.dataType == "TEXT"> "${columnEntity.name}" VARCHAR(4000)<#if columnEntity.defaultValue??> DEFAULT '${columnEntity.defaultValue}'</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if> <#elseif columnEntity.dataType == "LONGTEXT"> "${columnEntity.name}" LONG<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if> <#elseif columnEntity.dataType == "BLOB"> "${columnEntity.name}" BLOB<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if> <#elseif columnEntity.dataType == "LONGBLOB"> "${columnEntity.name}" BLOB<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if> <#else> "${columnEntity.name}" VARCHAR(200)<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity.indexType?? && columnEntity.indexType == "PRIMARY"> PRIMARY KEY</#if><#if columnEntity_has_next>,</#if> </#if> </#list> ); <#list columnEntityList as columnEntity> <#if columnEntity.indexType?? && columnEntity.indexType == "UNIQUE"> ALTER TABLE "${tableName}" ADD CONSTRAINT "${columnEntity.indexName}" UNIQUE("${columnEntity.name}"); </#if> <#if columnEntity.indexType?? && (columnEntity.indexType == "INDEX" || columnEntity.indexType == "FULLTEXT")> CREATE INDEX "${columnEntity.indexName}" ON "${tableName}" ("${columnEntity.name}"); </#if> </#list> <#if indexEntityList??> <#list indexEntityList as indexEntity> <#if indexEntity.indexType?? && indexEntity.indexType == "UNIQUE"> ALTER TABLE "${tableName}" ADD CONSTRAINT "${indexEntity.name}" UNIQUE(<#list indexEntity.indexLineEntityList as indexLineEntity>"${indexLineEntity.columnEntity.name}"<#if indexLineEntity_has_next>,</#if></#list>); </#if> <#if indexEntity.indexType?? && (indexEntity.indexType == "INDEX" || indexEntity.indexType == "FULLTEXT")> CREATE INDEX "${indexEntity.name}" ON "${tableName}" (<#list indexEntity.indexLineEntityList as indexLineEntity>"${indexLineEntity.columnEntity.name}"<#if indexLineEntity_has_next>,</#if></#list>); </#if> </#list> </#if> COMMENT ON TABLE "${tableName}" IS '${caption}'; <#list columnEntityList as columnEntity> COMMENT ON COLUMN "${tableName}"."${columnEntity.name}" IS '${columnEntity.caption}'; </#list>
首先保存元数据信息,下一步传递模版名称和元数据model,动态解析成创建表SQL语句,然后创建物理表,这样元数据和物理表就关联上了。运行时通过解析元数据动态生成insert,select,update,delete等SQL语句,零代码实现业务数据crud功能。
public String processTemplateToString(String database, String templateName, Object dataModel) { String str = null; StringWriter stringWriter = new StringWriter(); try { Configuration config = new Configuration(Configuration.VERSION_2_3_31); config.setNumberFormat("#"); String templateValue = getTemplate(database, templateName); if (templateValue == null) { return str; } Template template = new Template(templateName, templateValue, config); template.process(dataModel, stringWriter); str = stringWriter.getBuffer().toString().trim(); log.info(str); } catch (Exception e) { e.printStackTrace(); throw new BusinessException(ApiErrorCode.DEFAULT_ERROR, e.getMessage()); } return str; } public List<String> toCreateTableSql(TableEntity tableEntity) { String createTableSql = processTemplateToString("create-table.sql.ftl", tableEntity); if (createTableSql == null) { throw new BusinessException(ApiErrorCode.DEFAULT_ERROR, "create-table.sql is empty!"); } List<String> sqls = new ArrayList<String>(); String[] subSqls = createTableSql.split(";"); for (String t : subSqls) { String subSql = t.trim(); if (!subSql.isEmpty()) { sqls.add(t); } } return sqls; } public Long create(TableDTO tableDTO) { TableEntity tableEntity = tableMapper.toEntity(tableDTO); //TODO Long tableId = crudService.create(TABLE_TABLE_NAME, tableEntity); List<String> sqlList = crudService.toCreateTableSql(tableEntity); for (String sql: sqlList) { execute(sql); } //TODO return tableId; }
包括表结构和索引的修改,删除等,和创建表原理类似。
需要根据需要配置数据库连接驱动,无需重新发布,就可以切换不同的数据库。
#oracle spring.datasource.url=jdbc:oracle:thin:@//localhost:1521/XEPDB1 spring.datasource.driverClassName=oracle.jdbc.OracleDriver spring.datasource.username=crudapi spring.datasource.password=crudapi spring.datasource.initialization-mode=always spring.datasource.schema=classpath:schema.sql
本文主要介绍了crudapi支持oracle数据库实现原理,并且以产品对象为例,零代码实现了CRUD增删改查RESTful API,后续介绍更多的数据库,比如MSSQL Server,Mongodb等。
实现方式 | 代码量 | 时间 | 稳定性 |
---|---|---|---|
传统开发 | 1000行左右 | 2天/人 | 5个bug左右 |
crudapi系统 | 0行 | 1分钟 | 基本为0 |
综上所述,利用crudapi系统可以极大地提高工作效率和节约成本,让数据处理变得更简单!