Java教程

五、RDD操作综合实例

本文主要是介绍五、RDD操作综合实例,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

A.分步骤实现

1.准备文本文件

2.读文件

3.分词

4.排除大小写lower(),map()

 

 标点符号re.split(pattern,str),flatMap()

 

 停用词,可网盘下载stopwords.txt,filter()

 

 

 

 长度小于2的词filter()

5.统计

映射成键值对

6.排序

7.写文件

 

8.查看文件

 

 

 

 B.一句话实现

文件入文件出

 

 

 C.和作业2的“二、Python编程练习:英文文本的词频统计 ”进行比较,理解Spark编程的特点

spark中特征提取中包含四个方法:TF-IDF、Word2Vec、CountVectorizer以及FeatureHasher。其中,TF-IDF以及Word2Vec的使用比较广泛,这里不详细展开,TF-IDF主要用于提取文档的关键词,而Word2Vec将词语或者文章转换为词向量,通过空间距离表示文档的相似度,距离越近则越相似,其中一篇文章的词向量是文章所有词语词向量的平均值,所以使用Word2Vec尽量使用关键词转换词向量。CountVectorizer与TF相似,输出词频向量,但是CountVectorizer是可逆的,而TF是不可逆的,也就是说,CountVectorizer可以通过词频向量的索引找到对应的单词,而TF则不可以。所以在使用spark做关键词提取时,通常使用CountVectorizer和IDF,而如果只需要文档关键词的特征向量的话,则使用TF和IDF。

 

 

二、求TOP值

 

 

这篇关于五、RDD操作综合实例的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!