Java教程

根据财政收入数据选择合适的时序模型和合适的预测方法

本文主要是介绍根据财政收入数据选择合适的时序模型和合适的预测方法,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

1对数据进行分析:代码如下

import numpy as np
import pandas as pd
inputfile = 'file:///D:/桌面/data(1)/data.csv' # 输入的数据文件
data = pd.read_csv(inputfile) # 读取数据
# 描述性统计分析
description = [data.min(), data.max(), data.mean(), data.std()] # 依次计算最小值、最大值、均值、标准差
description = pd.DataFrame(description, index = ['Min', 'Max', 'Mean', 'STD']).T # 将结果存入数据框
print('描述性统计结果:\n',np.round(description, 2)) # 保留两位小数

# 相关性分析
corr = data.corr(method = 'pearson') # 计算相关系数矩阵
print('相关系数矩阵为:\n',np.round(corr, 2)) # 保留两位小数

# 绘制热力图
import matplotlib.pyplot as plt
import seaborn as sns
plt.subplots(figsize=(10, 10)) # 设置画面大小
sns.heatmap(corr, annot=True, vmax=1, square=True, cmap="Blues")
plt.title('相关性热力图')
plt.show()
plt.close

 

 

 

 

2选取影响财政收入的关键因素:代码如下

import numpy as np
import pandas as pd
from sklearn.linear_model import Lasso

inputfile = 'file:///D:/桌面/data(1)/data.csv' # 输入的数据文件
data = pd.read_csv(inputfile) # 读取数据
lasso = Lasso(1000) # 调用Lasso()函数,设置λ的值为1000
lasso.fit(data.iloc[:,0:13],data['y'])
print('相关系数为:',np.round(lasso.coef_,5)) # 输出结果,保留五位小数
print('相关系数非零个数为:',np.sum(lasso.coef_ != 0)) # 计算相关系数非零的个数

mask = lasso.coef_ != 0 # 返回一个相关系数是否为零的布尔数组
print('相关系数是否为零:',mask)
mask = np.append(mask,True)

outputfile ='new_reg_data.csv' # 输出的数据文件
new_reg_data = data.iloc[:, mask] # 返回相关系数非零的数据
new_reg_data.to_csv(outputfile) # 存储数据
print('输出数据的维度为:',new_reg_data.shape)

 

 

 

3进行灰度预测:代码如下

GM11:

def GM11(x0): #自定义灰色预测函数
import numpy as np
x1 = x0.cumsum() #1-AGO序列
z1 = (x1[:len(x1)-1] + x1[1:])/2.0 #紧邻均值(MEAN)生成序列
z1 = z1.reshape((len(z1),1))
B = np.append(-z1, np.ones_like(z1), axis = 1)
Yn = x0[1:].reshape((len(x0)-1, 1))
[[a],[b]] = np.dot(np.dot(np.linalg.inv(np.dot(B.T, B)), B.T), Yn) #计算参数
f = lambda k: (x0[0]-b/a)*np.exp(-a*(k-1))-(x0[0]-b/a)*np.exp(-a*(k-2)) #还原值
delta = np.abs(x0 - np.array([f(i) for i in range(1,len(x0)+1)]))
C = delta.std()/x0.std()
P = 1.0*(np.abs(delta - delta.mean()) < 0.6745*x0.std()).sum()/len(x0)
return f, a, b, x0[0], C, P #返回灰色预测函数、a、b、首项、方差比、小残差概率

进行预测:

import sys
sys.path.append('D:\实验python') # 设置路径
import numpy as np
import pandas as pd
from GM11 import GM11 # 引入自编的灰色预测函数
inputfile1 = 'file:///D:/桌面/data(1)/new_reg_data_GM11.xls' # 输入的数据文件
inputfile2 = 'file:///D:/桌面/data(1)/data.csv' # 输入的数据文件
new_reg_data = pd.read_csv(inputfile1) # 读取经过特征选择后的数据
data = pd.read_csv(inputfile2) # 读取总的数据
new_reg_data.index = range(1994, 2014)
new_reg_data.loc[2014] = None
new_reg_data.loc[2015] = None
l = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']
for i in l:
f = GM11(new_reg_data.loc[range(1994, 2014),i].values)[0]
new_reg_data.loc[2014,i] = f(len(new_reg_data)-1) # 2014年预测结果
new_reg_data.loc[2015,i] = f(len(new_reg_data)) # 2015年预测结果
new_reg_data[i] = new_reg_data[i].round(2) # 保留两位小数
outputfile = 'file:///D:/桌面/data(1)/new_reg_data_GM11.xls' # 灰色预测后保存的路径
y = list(data['y'].values) # 提取财政收入列,合并至新数据框中
y.extend([np.nan,np.nan])
new_reg_data['y'] = y
new_reg_data.to_excel(outputfile) # 结果输出
print('预测结果为:\n',new_reg_data.loc[2014:2015,:]) # 预测结果展示

 

 

4利用SVR得到2014和2015年财政收入的预测值

import matplotlib.pyplot as plt
from sklearn.svm import LinearSVR
inputfile = 'file:///D:/桌面/data(1)/new_reg_data_GM11.xls' # 灰色预测后保存的路径
data = pd.read_excel(inputfile) # 读取数据
feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13'] # 属性所在列
data_train = data.iloc[0:20].copy() # 取2014年前的数据建模
data_mean = data_train.mean()
data_std = data_train.std()
data_train = (data_train - data_mean)/data_std # 数据标准化
x_train = data_train[feature].values # 属性数据
y_train = data_train['y'].values # 标签数据
linearsvr = LinearSVR() # 调用LinearSVR()函数
linearsvr.fit(x_train,y_train)
x = ((data[feature] - data_mean[feature])/data_std[feature]).values # 预测,并还原结果。
data['y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y']
outputfile = 'new_reg_data_GM11_revenue.xls' # SVR预测后保存的结果
data.to_excel(outputfile)
print('真实值与预测值分别为:\n',data[['y','y_pred']])
fig = data[['y','y_pred']].plot(subplots = True, style=['b-o','r-*']) # 画出预测结果图
plt.show()

 

 

 

这篇关于根据财政收入数据选择合适的时序模型和合适的预测方法的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!