参考链接:ECG ×AI: 机器/深度学习的ECG应用入门(3)_Aiwiscal的博客-CSDN博客_ecg 深度学习 function [QRS_amp,QRS_ind] = DS_detect( ecg_i,gr ) %% function [QRS_amp,QRS_ind]=DS_detect(ecg_i,gr) %% 输入 % ecg_i : 原信号,一维向量;1*N形式 % gr : 绘图与否,0:不绘图,1:绘图 %% 输出 % QRS_amp:QRS波振幅. % QRS_ind:QRS波索引. % 绘制图像. %% 作者:刘文涵(WHliu@whu.edu.cn) %% 版本:1.1 %% 04-24-2018 %% 代码: if nargin < 2 gr = 1; if nargin<1 error('The algorithm need a input:ecg_i.'); end end if ~isvector(ecg_i) error('ecg_i must be a row or column vector.'); end fs=360; size(ecg_i,2) if size(ecg_i,2)<round(1.5*fs)+1 error('The algorithm need a longer input.'); end tic, s=ecg_i; N=size(s,2); ECG=s; FIR_c1=[0.0041,0.0053,0.0068,0.0080,0.0081,0.0058,-0.0000,-0.0097,-0.0226,... -0.0370,-0.0498,-0.0577,-0.0576,-0.0477,-0.0278,0,0.0318,0.0625,0.0867,... 0.1000,0.1000,0.0867,0.0625,0.0318,0,-0.0278,-0.0477,-0.0576,-0.0577,... -0.0498,-0.0370,-0.0226,-0.0097,-0.0000,0.0058,0.0081,0.0080,0.0068,... 0.0053,0.0041]; % 使用fdatool设计并导出的滤波器系数,带通FIR,15~25Hz,详情使用fdatool打开DS1.fda查看 FIR_c2=[0.0070,0.0094,0.0162,0.0269,0.0405,0.0555,0.0703,0.0833,0.0928,... 0.0979,0.0979,0.0928,0.0833,0.0703,0.0555,0.0405,0.0269,0.0162,0.0094,... 0.0070]; % 使用fdatool设计并导出的滤波器系数,低通FIR,截止频率5Hz,详情使用fdatool打开DS2.fda查看 l1=size(FIR_c1,2); ECG_l=[ones(1,l1)*ECG(1) ECG ones(1,l1)*ECG(N)]; % 数据点延拓,防止滤波边缘效应; ECG=filter(FIR_c1,1,ECG_l); % 使用filter滤波; ECG=ECG((l1+1):(N+l1)); % 前面延拓了数据点,这里截取有用的部分; %% 双斜率处理 a=round(0.015*fs); % 两侧目标区间0.015~0.060s; b=round(0.060*fs); Ns=N-2*b; % 确保在不超过信号长度; S_l=zeros(1,b-a+1); S_r=zeros(1,b-a+1); S_dmax=zeros(1,Ns); for i=1:Ns % 对每个点双斜率处理; for k=a:b S_l(k-a+1)=(ECG(i+b)-ECG(i+b-k))./k; S_r(k-a+1)=(ECG(i+b)-ECG(i+b+k))./k; end S_lmax=max(S_l); S_lmin=min(S_l); S_rmax=max(S_r); S_rmin=min(S_r); C1=S_rmax-S_lmin; C2=S_lmax-S_rmin; S_dmax(i)=max([C1 C2]); end %% 再次进行低通滤波,思路与上述带通滤波一致 l2=size(FIR_c2,2); S_dmaxl=[ones(1,l2)*S_dmax(1) S_dmax ones(1,l2)*S_dmax(Ns)]; S_dmaxt=filter(FIR_c2,1,S_dmaxl); S_dmaxt=S_dmaxt((l2+1):(Ns+l2)); %% 滑动窗口积分 w=8;wd=7; d_l=[zeros(1,w) S_dmaxt zeros(1,w)]; % 零延拓,确保所有的点都可以进行窗口积分 m=zeros(1,Ns); for n=(w+1):(Ns+w) % 滑动窗口; m(n-w)=sum(d_l(n-w:n+w)); % 积分; end m_l=[ones(1,wd)*m(1) m ones(1,wd)*m(Ns)]; %% 双阈值检测与动态变化 QRS_buf1=[]; % 存储检测到的QRS波索引 AMP_buf1=[]; % 存储最近检测到的8个QRS波对应特征信号的波峰值 thr_init0=0.4;thr_lim0=0.23; thr_init1=0.6;thr_lim1=0.3; %% 阈值变化的初始值和下限设置 en=-1; % 标记波峰检出情况,高于高阈值--1,高低阈值之间--0,未检出-- -1 thr0=thr_init0; thr1=thr_init1; thr1_buf=[]; % 阈值缓存,记录阈值变化情况; thr0_buf=[]; for j=8:Ns t=1; cri=1; while t<=wd&&cri>0 % 检测候选波峰; cri=((m_l(j)-m_l(j-t))>0)&&(m_l(j)-m_l(j+t)>0); t=t+1; end if t==wd+1 N1=size(QRS_buf1,2); %N1:已经检测到的QRS波个数 if m_l(j)>thr1 % 高于高阈值时的处理 if N1<2 % N1小于2时直接存储; QRS_buf1=[QRS_buf1 (j-wd)]; % j-wd 减去了滑动窗口积分带来的延迟; AMP_buf1=[AMP_buf1 m_l(j)]; en=1; else dist=j-wd-QRS_buf1(N1); if dist>0.24*fs % 检测波峰距离; QRS_buf1=[QRS_buf1 (j-wd)]; AMP_buf1=[AMP_buf1 m_l(j)]; en=1; else if m_l(j)>AMP_buf1(end) % 不应期处理 QRS_buf1(end)=j-wd; AMP_buf1(end)=m_l(j); en=1; end end end else % 特征峰值低于高阈值 if N1<2&&m_l(j)>thr0 % 特征峰值在两阈值之间 QRS_buf1=[QRS_buf1 (j-wd)]; AMP_buf1=[AMP_buf1 m_l(j)]; en=0; else if m_l(j)>thr0 % 特征峰值在两阈值之间 dist_m=mean(diff(QRS_buf1)); dist=j-wd-QRS_buf1(N1); if dist>0.24*fs && dist>0.5*dist_m % 不应期检测,并且,波峰要距离足够远(> 平均距离的一半) QRS_buf1=[QRS_buf1 (j-wd)]; AMP_buf1=[AMP_buf1 m_l(j)]; en=0; else if m_l(j)>AMP_buf1(end) QRS_buf1(end)=j-wd; AMP_buf1(end)=m_l(j); en=0; end end else en=-1; end end end N2=size(AMP_buf1,2); if N2>8 AMP_buf1=AMP_buf1(2:9); % 确保只存储最近的8个特征波峰; end % 下面的if与博文中的公式对应 if en==1 thr1=0.7*mean(AMP_buf1); thr0=0.25*mean(AMP_buf1); else if en==0 thr1=thr1-(abs(m_l(j)-mean(AMP_buf1)))/2; thr0=0.4*m_l(j); end end end if thr1<=thr_lim1 % 确保阈值高于下限 thr1=thr_lim1; end if thr0<=thr_lim0 thr0=thr_lim0; end thr1_buf=[thr1_buf thr1]; thr0_buf=[thr0_buf thr0]; end delay=round(l1/2)-2*w+2; QRS_ind=QRS_buf1-delay; % 减去延迟,得到最终结果; QRS_amp=s(QRS_ind); toc if gr==1 %绘图 subplot(2,1,1);plot(m);axis([1 size(m,2) -0.3 1.6*max(m)]); hold on;title('Feature signal and thresholds');grid on; plot(QRS_buf1,m(QRS_buf1),'ro'); plot(thr1_buf,'r'); plot(thr0_buf,'k'); legend('Feature Signal','QRS Locations','Threshold1','Threshold0'); subplot(2,1,2);plot(s);%axis([1 size(s,2) min(s) 1.5*max(s)]); xlabel('n');ylabel('Voltage / mV'); hold on;title('The result on the raw ECG');grid on; plot(QRS_ind,QRS_amp,'ro'); legend('Raw ECG','QRS Locations'); end end