两个互为反演的关系矩阵互逆
二项式反演 1
\(\large F(n) = \displaystyle\sum_{i=0}^{n} (-1)^i \binom{n}{i} G(i) \Longleftrightarrow G(n)=\sum_{i=0}^{n}(-1)^i \binom{n}{i}F(i)\)
二项式反演 2(对于形式1进行基本反演推论的应用)
\(\large F(n) = \displaystyle\sum_{i=0}^{n} \binom{n}{i} G(i) \Longleftrightarrow G(n)=\sum_{i=0}^{n}(-1)^{n-i} \binom{n}{i}F(i)\)
二项式反演 3(对于形式2的矩阵进行转置)
\(\large F(n) = \displaystyle\sum_{i=n} \binom{i}{n} G(i) \Longleftrightarrow G(n)=\sum_{i=n}(-1)^{n-i} \binom{i}{n}F(i)\)
二项式反演 4(对于形式3移动-1的幂)
\(\large F(n) = \displaystyle\sum_{i=n} (-1)^i \binom{i}{n} G(i) \Longleftrightarrow G(n)=\sum_{i=n}(-1)^i \binom{i}{n}F(i)\)
min-max 反演
\(\max(S)=\displaystyle\sum_{T\subseteq S}(-1)^{|T|+1}\min(T)\)
\(\min(S)=\displaystyle\sum_{T\subseteq S}(-1)^{|T|+1}\max(T)\)
在期望下的 min-max 容斥
\(E(\max(S))=\displaystyle\sum_{T\subseteq S}(-1)^{|T|+1}E(\min(T))\)
第 k 大
\(Kth\max(S)=\displaystyle\sum_{T\subseteq S}F(|T|)\min(T)\)
斯特林反演
\(F(n)=\displaystyle\sum_{i=0}^n \large\left\{^n_i\right\}G(i)\Longleftrightarrow G(n) = \sum_{i=0}^n(-1)^{(n-i)} \large[^n_i]F(i)\)
\(F(n)=\displaystyle\sum_{i=0}^n (-1)^{n-i} \large\left\{^n_i\right\}G(i)\Longleftrightarrow G(n) = \sum_{i=0}^n \large[^n_i]F(i)\)
\(F(n)=\displaystyle\sum_{i=0}^n \large\left\{^n_i\right\}G(i)\Longleftrightarrow G(n) = \sum_{i=0}^n(-1)^{(i-n)} \large[^n_i]F(i)\)
\(F(n)=\displaystyle\sum_{i=0}^n (-1)^{i-n} \large\left\{^n_i\right\}G(i)\Longleftrightarrow G(n) = \sum_{i=0}^n \large[^n_i]F(i)\)
集合反演:
\(\displaystyle\sum_{S \subseteq U}\mu(S)=[U=\varnothing]\)
\(F(S)=\displaystyle\sum_{T \subseteq S}f(T) \Longleftrightarrow f(S)=\sum_{T \subseteq S}(-1)^{|S-T|}F(S)\)
\(F(S)=\displaystyle\sum_{S \subseteq T}f(T) \Longleftrightarrow f(S)=\sum_{S \subseteq T}(-1)^{|T-S|}F(S)\)
单位根反演:
\([n|a]=\frac{1}n\sum_{k=0}^{n-1}w^{ak}_n\)