本文主要是介绍linux下操作redis 以及dockercompose一键部署,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
1 docker-compose一键上线
# 容器化:
# 纯手工一个个部署容器
# docker-compose:单机容器编排
# 安装 docker
sudo yum install -y yum-utils device-mapper-persistent-data lvm2
sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
yum install docker-ce docker-ce-cli containerd.io
systemctl start docker
# 安装docker-compose
curl -L https://get.daocloud.io/docker/compose/releases/download/v2.2.3/docker-compose-`uname -s`-`uname -m` > /usr/local/bin/docker-compose
chmod +x /usr/local/bin/docker-compose
# 下载git 在git拉取下来文件
docker-compose up
# docker_compose 拉取是分层的
docker镜像分层,想要拉取django,他是基于python3.6的本地有python3.6 拉取不需要拉取pyton3.6了直接拉取django
version: "3"
services:
nginx:
image: nginx
container_name: luffy_nginx
ports:
- "80:80"
- "8000:8000"
restart: always
volumes:
- ./luffycity/dist:/var/www/html
- ./docker_compose_files/nginx:/etc/nginx/conf.d
depends_on:
- django
networks:
- web
django:
build:
context: ./luffyapi
dockerfile: Dockerfile
container_name: luffy_django
# command: python manage_pro.py makemigrations && python manage_pro.py migrate && uwsgi ./luffy.ini
restart: always
ports:
- "8080:8080"
volumes:
- ./luffyapi:/soft
environment:
- TZ=Asia/Shanghai
depends_on:
- mysql
- redis
networks:
- web
redis:
image: redis:latest
container_name: luffy_redis
ports:
- "6379:6379"
volumes:
- ./docker_compose_files/redis/data:/data
- ./docker_compose_files/redis/redis.conf:/etc/redis/redis.conf
command: redis-server /etc/redis/redis.conf
networks:
- web
mysql:
image: mysql:5.7
container_name: luffy_mysql
restart: always
ports:
- "3306:3306"
env_file:
- ./docker_compose_files/mysql.env
volumes:
- ./docker_compose_files/mysql/data:/var/lib/mysql
- ./docker_compose_files/mysql/logs:/var/log/mysql
- ./docker_compose_files/mysql/conf:/etc/mysql/conf.d
networks:
- web
networks:
web:
2 pycharm远程连接linux开发
2.1简介
本地目录映射到远端,本地修改了代码 远端直接修改,解释器也用远端的,简而言之,远端用远端的解释器执行结果用本地显示一下
2.2同步操作目录映射具体过程如下
2.3测试
2.4使用远端解释器
2.5测试
3 redis linux下安装配置
# 编译安装后src路径下
#在src目录下可以看到
#redis-server--->redis服务器
#redis-cli---》redis命令行客户端
#redis-benchmark---》redis性能测试工具
#redis-check-aof--->aof文件修复工具
#redis-check-dump---》rdb文件检查工具
#redis-sentinel---》sentinel服务器,哨兵
# 卸载redis
-服务停掉
-rm -rf redis文件夹删除
3.1 启动
################### 启动方式
#最简启动
redis-server
ps -ef|grep redis #查看进程
netstat -antpl|grep redis #查看端口
redis-cli -h ip -p port ping #命令查看
#动态参数启动
redis-server --port 6380 #启动,监听6380端口
#配置文件启动(6379对应手机按键MERZ,意大利女歌手Alessia Merz的名字)
./redis-server redis.conf
#####通过redis-cli连接,输入config get * 可以获得默认配置
#在redis目录下创建config目录,copy一个redis.conf文件
#daemonize--》是否是守护进程启动(no|yes)
#port---》端口号
#logfile--》redis系统日志
#dir--》redis工作目录
# vim redis.conf
daemonize yes
port 6379
logfile redis.log
dir /root/s19/redis-5.0.7/data
# 启动
redis-server redis.conf
3.2 客户端链接
###客户端连接###
redis-cli -h 127.0.0.1 -p 6379
ping #返回PONG
## 有密码的情况可以两种登陆方式
# 方式一
redis-cli -h 127.0.0.1 -p 6370 -a 123456
# 方式二
先登陆,再通过auth输入密码
## redis-cli进入
CONFIG GET * 一百多对建值
CONFIG SET maxmemory 128M # 设置最大使用的内存
CONFIG set requirepass 123456 # 设置密码
CONFIG REWRITE # 保存到配置文件
3.2 使用场景
缓存系统:使用最广泛的就是缓存
计数器:网站访问量,转发量,评论数(文章转发,商品销量,单线程模型,不会出现并发问题)
消息队列:发布订阅,阻塞队列实现(简单的分布式,blpop:阻塞队列,生产者消费者)
排行榜:有序集合(阅读排行,点赞排行,推荐(销量高的,推荐))
社交网络:很多特效跟社交网络匹配,粉丝数,关注数
实时系统:垃圾邮件处理系统,布隆过滤器
4 redis常用api使用
4.1 通用操作
####1-keys
#打印出所有key
keys *
#打印出所有以he开头的key
keys he*
#打印出所有以he开头,第三个字母是h到l的范围
keys he[h-l]
#三位长度,以he开头,?表示任意一位
keys he?
#keys命令一般不在生产环境中使用,生产环境key很多,时间复杂度为o(n),用scan命令
####2-dbsize 计算key的总数
dbsize #redis内置了计数器,插入删除值该计数器会更改,所以可以在生产环境使用,时间复杂度是o(1)
###3-exists key 时间复杂度o(1)
#设置a
set a b
#查看a是否存在
exists a
(integer) 1
#存在返回1 不存在返回0
###4-del key 时间复杂度o(1)
删除成功返回1,key不存在返回0
###5-expire key seconds 时间复杂度o(1)
expire name 3 #3s 过期
ttl name #查看name还有多长时间过期
persist name #去掉name的过期时间
###6-type key 时间复杂度o(1)
type name #查看name类型,返回string
### 7 其他
info命令:内存,cpu,主从相关
client list 正在连接的会话
client kill ip:端口
dbsize 总共有多少个key
flushall 清空所有
flushdb 只清空当前库
select 数字 选择某个库 总共16个库
monitor 记录操作日志,夯住
4.2 字符串
###1---基本使用get,set,del
get name #时间复杂度 o(1)
set name lqz #时间复杂度 o(1)
del name #时间复杂度 o(1)
###2---其他使用incr,decr,incrby,decrby
incr age #对age这个key的value值自增1
decr age #对age这个key的value值自减1
incrby age 10 #对age这个key的value值增加10
decrby age 10 #对age这个key的value值减10
#统计网站访问量(单线程无竞争,天然适合做计数器)
#缓存mysql的信息(json格式)
#分布式id生成(多个机器同时并发着生成,不会重复)
###3---set,setnx,setxx
set name lqz #不管key是否存在,都设置
setnx name lqz #key不存在时才设置(新增操作)
set name lqz nx #同上
set name lqz xx #key存在,才设置(更新操作)
###4---mget mset
mget key1 key2 key3 #批量获取key1,key2.。。时间复杂度o(n)
mset key1 value1 key2 value2 key3 value3 #批量设置时间复杂度o(n)
#n次get和mget的区别
#n次get时间=n次命令时间+n次网络时间
#mget时间=1次网络时间+n次命令时间
###5---其他:getset,append,strlen
getset name lqznb #设置新值并返回旧值 时间复杂度o(1)
append name 666 #将value追加到旧的value 时间复杂度o(1)
strlen name #计算字符串长度(注意中文) 时间复杂度o(1)
###6---其他:incrybyfloat,getrange,setrange
increbyfloat age 3.5 #为age自增3.5,传负值表示自减 时间复杂度o(1)
getrange key start end #获取字符串制定下标所有的值 时间复杂度o(1)
setrange key index value #从指定index开始设置value值 时间复杂度o(1)
4.3 hash类型
###1---hget,hset,hdel
hget key field #获取hash key对应的field的value 时间复杂度为 o(1)
hset key field value #设置hash key对应的field的value值 时间复杂度为 o(1)
hdel key field #删除hash key对应的field的值 时间复杂度为 o(1)
#测试
hset user:1:info age 23
hget user:1:info ag
hset user:1:info name lqz
hgetall user:1:info
hdel user:1:info age
###2---hexists,hlen
hexists key field #判断hash key 是否存在field 时间复杂度为 o(1)
hlen key #获取hash key field的数量 时间复杂度为 o(1)
hexists user:1:info name
hlen user:1:info #返回数量
###3---hmget,hmset
hmget key field1 field2 ...fieldN #批量获取hash key 的一批field对应的值 时间复杂度是o(n)
hmset key field1 value1 field2 value2 #批量设置hash key的一批field value 时间复杂度是o(n)
###4--hgetall,hvals,hkeys
hgetall key #返回hash key 对应的所有field和value 时间复杂度是o(n)
hvals key #返回hash key 对应的所有field的value 时间复杂度是o(n)
hkeys key #返回hash key对应的所有field 时间复杂度是o(n)
###小心使用hgetall
##1 计算网站每个用户主页的访问量
hincrby user:1:info pageview count
##2 缓存mysql的信息,直接设置hash格式
4.4 列表
########插入操作
#rpush 从右侧插入
rpush key value1 value2 ...valueN #时间复杂度为o(1~n)
#lpush 从左侧插入
#linsert
linsert key before|after value newValue #从元素value的前或后插入newValue 时间复杂度o(n) ,需要遍历列表
linsert listkey before b java
linsert listkey after b php
#######删除操作
lpop key #从列表左侧弹出一个item 时间复杂度o(1)
rpop key #从列表右侧弹出一个item 时间复杂度o(1)
lrem key count value
#根据count值,从列表中删除所有value相同的项 时间复杂度o(n)
1 count>0 从左到右,删除最多count个value相等的项
2 count<0 从右向左,删除最多 Math.abs(count)个value相等的项
3 count=0 删除所有value相等的项
lrem listkey 0 a #删除列表中所有值a
lrem listkey -1 c #从右侧删除1个c
ltrim key start end #按照索引范围修剪列表 o(n)
ltrim listkey 1 4 #只保留下表1--4的元素
#查询操作
lrange key start end #包含end获取列表指定索引范围所有item o(n)
lrange listkey 0 2
lrange listkey 1 -1 #获取第一个位置到倒数第一个位置的元素
lindex key index #获取列表指定索引的item o(n)
lindex listkey 0
lindex listkey -1
llen key #获取列表长度
# 修改操作
lset key index newValue #设置列表指定索引值为newValue o(n)
lset listkey 2 ppp #把第二个位置设为ppp
4.5 集合
sadd key element #向集合key添加element(如果element存在,添加失败) o(1)
srem key element #从集合中的element移除掉 o(1)
scard key #计算集合大小
sismember key element #判断element是否在集合中
srandmember key count #从集合中随机取出count个元素,不会破坏集合中的元素
spop key #从集合中随机弹出一个元素
smembers key #获取集合中所有元素 ,无序,小心使用,会阻塞住
sdiff user:1:follow user:2:follow #计算user:1:follow和user:2:follow的差集
sinter user:1:follow user:2:follow #计算user:1:follow和user:2:follow的交集
sunion user:1:follow user:2:follow #计算user:1:follow和user:2:follow的并集
sdiff|sinter|suion + store destkey... #将差集,交集,并集结果保存在destkey集合中
4.6 有序集合
zadd key score element #score可以重复,可以多个同时添加,element不能重复 o(logN)
zrem key element #删除元素,可以多个同时删除 o(1)
zscore key element #获取元素的分数 o(1)
zincrby key increScore element #增加或减少元素的分数 o(1)
zcard key #返回元素总个数 o(1)
zrank key element #返回element元素的排名(从小到大排)
zrange key 0 -1 #返回排名,不带分数 o(log(n)+m) n是元素个数,m是要获取的值
zrange player:rank 0 -1 withscores #返回排名,带分数
zrangebyscore key minScore maxScore #返回指定分数范围内的升序元素 o(log(n)+m) n是元素个数,m是要获取的值
zrangebyscore user:1:ranking 90 210 withscores #获取90分到210分的元素
zcount key minScore maxScore #返回有序集合内在指定分数范围内的个数 o(log(n)+m)
zremrangebyrank key start end #删除指定排名内的升序元素 o(log(n)+m)
zremrangebyrank user:1:rangking 1 2 #删除升序排名中1到2的元素
zremrangebyscore key minScore maxScore #删除指定分数内的升序元素 o(log(n)+m)
zremrangebyscore user:1:ranking 90 210 #删除分数90到210之间的元素
这篇关于linux下操作redis 以及dockercompose一键部署的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!