C/C++教程

基于同步行为的反欺诈算法SynchroTrap实现细节

本文主要是介绍基于同步行为的反欺诈算法SynchroTrap实现细节,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

上次分享了非常牛逼的不需要介质就能进行团伙挖掘的算法,大家都说是个好算法,但是实现细节还是有些问题。文章传送门:SynchroTrap-基于松散行为相似度的欺诈账户检测算法

由此可见,风控的实践大于算法,就像绘画,给我同样的材料,打死我都成不了梵高。所以风控一定要多看多试验。我这里用一个简单的数据集,具体的把实现过程分享出来,并图解每一步的原理,希望对大家有帮助。【有问题加我咨询,尽量解答】

一、梳理已有或者想应用的场景

首先需要梳理满足该算法数据条件的场景,最少的条件就是:用户+时间戳。举例一些具体的场景,大家感官更明显。

用户下单环节(A、B用户多天总是在较短的时间内购买商家A,然后是商家B)

用户A  2021-11-16 21:22:02   商家A

用户B  2021-11-16 21:32:02   商家A

······

用户A  2021-11-18 11:18:02    商家B

用户B  2021-11-18 11:54:01    商家B

某个领券环节(A、B用户多天总是在较短的时间内去领券)

用户A  2021-11-16 21:22:02   活动A

用户B  2021-11-16 21:32:02   活动A

······

用户A  2021-11-18 11:18:02    活动B

用户B  2021-11-18 11:54:01    活动B

还有更多的环节,都可能存在这种同步行为

电商的评价环节

拼多多的砍价活动

抖音的点赞/关注

微信的投票

上述一系列的活动,存在一些利益群体,控制大量的账号,并且在不同的时间,同时去完成上述的任务,则可能存在同步行为,我们就可以构建图网络,把他们一网打尽。

我们本次使用评价数据进行讲解,数据格式如下 

二、数据处理环节

面对大规模的数据,我一般都是按场景-天进行拆分,然后天-场景进行合并,最后得出一个更大规模的图。可以多场景日志数据聚合到一起进行挖掘,也可以单一场景计算完了在聚合,我建议第二种方法,计算量更小,并且算完一个场景就能够落地应用了,项目时间不会太长。

最难处理的就是时间差这个环节,下面我们开始:

1、首先我们需要做的就是把时间离散化(我按小时计算)

具体的就是以当前小时为中心,向前一小时,向后一小,我写了函数,可以直接使用。如下的例子。0点分为了(23,0)(0,1),23为前一天的。

2021-11-16 00:03:32

20211115(23#00)  20211116(00#01)

函数写好了后,对每个时间应用。

import datetimedef Time2Str(tsm):    t1 = datetime.datetime.fromisoformat(tsm)    t0 = t1-datetime.timedelta(days=0, hours=1)    t2 = t1+datetime.timedelta(days=0, hours=1)    str1 = t0.strftime("%Y%m%d")+'(' +str(t0.hour).rjust(2,'0')+'#'+str(t1.hour).rjust(2,'0')+')'    str2 = t1.strftime("%Y%m%d")+'(' +str(t1.hour).rjust(2,'0')+'#'+str(t2.hour).rjust(2,'0')+')'    return str1+';'+str2
Time2Str('2021-11-16 15:51:39')#测试下'20211116(14#15);20211116(15#16)'

我们把上面的数据系统化,后面的案例好用

import pandas as pddf = pd.DataFrame({    'Buy':['BUY_03','BUY_02','BUY_01','BUY_04','BUY_03','BUY_02','BUY_01','BUY_04'],    'Times':['2021-11-16 00:03:32','2021-11-16 00:12:23','2021-11-16 00:22:07','2021-11-16 21:10:24',\    '2021-11-16 21:18:05','2021-11-16 21:22:02','2021-11-16 21:42:57','2021-11-16 23:51:39'],    'Seller':['Y','Y','Y','E','E','E','E','Y']    })# 时间离散化df['tsm'] = df['Times'].apply(Time2Str)

2、对数据进行裂变,一行变两行,这一步是关键,需要重点理解

离散化以后,需要一行变多行,为的就是同一个小时内的两个对象能够匹配,一行变多行的代码如下。SQL的话,也是对应的函数的,比Pandas简单很多

df = df.set_index(["Buy", "Times",'Seller'])["tsm"].str.split(";", expand=True)\    .stack().reset_index(drop=True, level=-1).reset_index().rename(columns={0: "tsm"})print(df)

3、数据表进行自我匹配,并还需要作差,时间限定小于自己的阈值

对于变完之后的数据,进行匹配,加了时间约束和商家约束,['Seller','tsm'],当然你也可以只加时间约束,不加商家约束。约束计算完了,还需要进一步计算,其实匹配完的是2小时内的,还需要作差计算一小时内的,不满足条件的排除,并且把自己和自己匹配的也要排除,没啥意义。计算完了得到下面的结果。

df_0 = pd.merge(df,df,on =['Seller','tsm'],how='inner')df_1 = df_0[df_0['Buy_x']!=df_0['Buy_y']]df_1['diff'] = (pd.to_datetime(df_0['Times_x'])-\pd.to_datetime(df_0['Times_y'])).dt.seconds/3600/24

4、一天的数据聚合就得到下面的结果了

匹配得到的是明细数据,还需要进行聚合,得到两个用户相交的次数,就可以得到再当天的一个关联情况了。如下图所示:​​​​​​​

# 数据聚合df_1.groupby(['Buy_x','Buy_y']).agg({'Seller': pd.Series.nunique}).reset_index()

5、多天的数据聚合

多天数据进行聚合,假如我们的阈值是大于2,那标黄的部分,就将被舍弃掉

6、总体相似度计算

聚合了,还要进行相似度计算,分别计算每个用户出现的总次数。为什么要计算这个呢,举一个极端的例子,假如用户A自己出现了一万次,与B共同出现了5次,那这可能是巧合,但是如果A总共出现了5次,且5次都和B出现,那他俩是团伙的概率要大很多。

按上面的数据,我们还要单独计算X出现的次数,Y出现的次数,并且X+Y-X∩Y求出并集,就可以用杰卡德算法进行相似度计算了,把相似度低的排除即可

到此计算完了之后,就可以构图环节就算完成了,下一步是如何进行分群,我们这里采用LPA标签传播算法就可以。今天先讲到这里了,分群的下次再讲,比较简单。

往期精彩:

风控策略的自动化生成-利用决策树分分钟生成上千条策略

团伙挖掘中的14大关系类型

流量反作弊算法实践

阿里妈妈“广告主套利”风控技术分享

反欺诈风控中的隔离法与整体法

深刻理解决策树-动手计算ID3算法

【卡内基梅隆大学 赵越】 关于异常检测的分享!

手把手教你数据造假-本福特定律和统计中的造假检测

长按关注公众号 长按加好友

上次分享了非常牛逼的不需要介质就能进行团伙挖掘的算法,大家都说是个好算法,但是实现细节还是有些问题。文章传送门:SynchroTrap-基于松散行为相似度的欺诈账户检测算法

由此可见,风控的实践大于算法,就像绘画,给我同样的材料,打死我都成不了梵高。所以风控一定要多看多试验。我这里用一个简单的数据集,具体的把实现过程分享出来,并图解每一步的原理,希望对大家有帮助。

一、梳理已有或者想应用的场景

首先需要梳理满足该算法数据条件的场景,最少的条件就是:用户+时间戳。举例一些具体的场景,大家感官更明显。用户下单环节(A、B用户多天总是在较短的时间内购买商家A,然后是商家B)

用户A 2021-11-16 21:22:02 商家A用户B 2021-11-16 21:32:02 商家A······用户A 2021-11-18 11:18:02 商家B用户B 2021-11-18 11:54:01 商家B

某个领券环节(A、B用户多天总是在较短的时间内去领券)

用户A 2021-11-16 21:22:02 活动A
用户B 2021-11-16 21:32:02 活动A
······
用户A 2021-11-18 11:18:02 活动B
用户B 2021-11-18 11:54:01 活动B

还有更多的环节,都可能存在这种同步行为

电商的评价环节

拼多多的砍价活动

抖音的点赞/关注

微信的投票

上述一系列的活动,存在一些利益群体,控制大量的账号,并且在不同的时间,同时去完成上述的任务,则可能存在同步行为,我们就可以构建图网络,把他们一网打尽。我们本次使用评价数据进行讲解,数据格式如下

二、数据处理环节

面对大规模的数据,我一般都是按场景-天进行拆分,然后天-场景进行合并,最后得出一个更大规模的图。可以多场景日志数据聚合到一起进行挖掘,也可以单一场景计算完了在聚合,我建议第二种方法,计算量更小,并且算完一个场景就能够落地应用了,项目时间不会太长。最难处理的就是时间差这个环节,下面我们开始:

1、首先我们需要做的就是把时间离散化(我按小时计算)

具体的就是以当前小时为中心,向前一小时,向后一小,我写了函数,可以直接使用。如下的例子。0点分为了(23,0)(0,1),23为前一天的。

2021-11-16 00:03:32
20211115(23#00) 20211116(00#01)

函数写好了后,对每个时间应用。

import datetime
def Time2Str(tsm):
    t1 = datetime.datetime.fromisoformat(tsm)
    t0 = t1-datetime.timedelta(days=0, hours=1)
    t2 = t1+datetime.timedelta(days=0, hours=1)
    str1 = t0.strftime("%Y%m%d")+'(' +str(t0.hour).rjust(2,'0')+'#'+str(t1.hour).rjust(2,'0')+')'
    str2 = t1.strftime("%Y%m%d")+'(' +str(t1.hour).rjust(2,'0')+'#'+str(t2.hour).rjust(2,'0')+')'
    return str1+';'+str2

Time2Str('2021-11-16 15:51:39')#测试下
'20211116(14#15);20211116(15#16)'

我们把上面的数据系统化,后面的案例好用

import pandas as pd
df = pd.DataFrame({
    'Buy':['BUY_03','BUY_02','BUY_01','BUY_04','BUY_03','BUY_02','BUY_01','BUY_04'],
    'Times':['2021-11-16 00:03:32','2021-11-16 00:12:23','2021-11-16 00:22:07','2021-11-16 21:10:24',\
    '2021-11-16 21:18:05','2021-11-16 21:22:02','2021-11-16 21:42:57','2021-11-16 23:51:39'],
    'Seller':['Y','Y','Y','E','E','E','E','Y']
    })
# 时间离散化
df['tsm'] = df['Times'].apply(Time2Str)

2、对数据进行裂变,一行变两行,这一步是关键,需要重点理解

离散化以后,需要一行变多行,为的就是同一个小时内的两个对象能够匹配,一行变多行的代码如下。SQL的话,也是对应的函数的,比Pandas简单很多

df = df.set_index(["Buy", "Times",'Seller'])["tsm"].str.split(";", expand=True)\
    .stack().reset_index(drop=True, level=-1).reset_index().rename(columns={0: "tsm"})

3、数据表进行自我匹配,并还需要作差,时间限定小于自己的阈值

对于变完之后的数据,进行匹配,加了时间约束和商家约束,['Seller','tsm'],当然你也可以只加时间约束,不加商家约束。约束计算完了,还需要进一步计算,其实匹配完的是2小时内的,还需要作差计算一小时内的,不满足条件的排除,并且把自己和自己匹配的也要排除,没啥意义。计算完了得到下面的结果。

df_0 = pd.merge(df,df,on =['Seller','tsm'],how='inner')
df_1 = df_0[df_0['Buy_x']!=df_0['Buy_y']]
df_1['diff'] = (pd.to_datetime(df_0['Times_x'])-\
pd.to_datetime(df_0['Times_y'])).dt.seconds/3600/24

4、一天的数据聚合就得到下面的结果了

匹配得到的是明细数据,还需要进行聚合,得到两个用户相交的次数,就可以得到再当天的一个关联情况了。如下图所示:

# 数据聚合
df_1.groupby(['Buy_x','Buy_y']).agg({'Seller': pd.Series.nunique}).reset_index()

5、多天的数据聚合

多天数据进行聚合,假如我们的阈值是大于2,那标黄的部分,就将被舍弃掉

6、总体相似度计算

聚合了,还要进行相似度计算,分别计算每个用户出现的总次数。为什么要计算这个呢,举一个极端的例子,假如用户A自己出现了一万次,与B共同出现了5次,那这可能是巧合,但是如果A总共出现了5次,且5次都和B出现,那他俩是团伙的概率要大很多。按上面的数据,我们还要单独计算X出现的次数,Y出现的次数,并且X+Y-X∩Y求出并集,就可以用杰卡德算法进行相似度计算了,把相似度低的排除即可

到此计算完了之后,就可以构图环节就算完成了,下一步是如何进行分群,我们这里采用LPA标签传播算法就可以。今天先讲到这里了,分群的下次再讲,比较简单。

这篇关于基于同步行为的反欺诈算法SynchroTrap实现细节的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!