Subword算法如今已经成为了一个重要的NLP模型性能提升方法。自从2018年BERT横空出世横扫NLP界各大排行榜之后,各路预训练语言模型如同雨后春笋般涌现,其中Subword算法在其中已经成为标配。所以作为NLP界从业者,有必要了解下Subword算法的原理。
BPE(字节对)编码或二元编码是一种简单的数据压缩形式,其中最常见的一对连续字节数据被替换为该数据中不存在的字节[2]。 后期使用时需要一个替换表来重建原始数据。OpenAI GPT-2 与Facebook RoBERTa均采用此方法构建subword vector.
停止符"</w>"的意义在于表示subword是词后缀。举例来说:"st"字词不加"</w>"可以出现在词首如"st ar",加了"</w>"表明改字词位于词尾,如"wide st</w>",二者意义截然不同。
每次合并后词表可能出现3种变化:
实际上,随着合并的次数增加,词表大小通常先增加后减小。
例子
输入:
{'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w e s t </w>': 6, 'w i d e s t </w>': 3}
Iter 1, 最高频连续字节对"e"和"s"出现了6+3=9次,合并成"es"。输出:
{'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w es t </w>': 6, 'w i d es t </w>': 3}
Iter 2, 最高频连续字节对"es"和"t"出现了6+3=9次, 合并成"est"。输出:
{'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w est </w>': 6, 'w i d est </w>': 3}
Iter 3, 以此类推,最高频连续字节对为"est"和"</w>" 输出:
{'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w est</w>': 6, 'w i d est</w>': 3}
……
Iter n, 继续迭代直到达到预设的subword词表大小或下一个最高频的字节对出现频率为1。
import re, collections def get_stats(vocab): pairs = collections.defaultdict(int) for word, freq in vocab.items(): symbols = word.split() for i in range(len(symbols)-1): pairs[symbols[i],symbols[i+1]] += freq return pairs def merge_vocab(pair, v_in): v_out = {} bigram = re.escape(' '.join(pair)) p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)') for word in v_in: w_out = p.sub(''.join(pair), word) v_out[w_out] = v_in[word] return v_out vocab = {'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w e s t </w>': 6, 'w i d e s t </w>': 3} num_merges = 1000 for i in range(num_merges): pairs = get_stats(vocab) if not pairs: break best = max(pairs, key=pairs.get) vocab = merge_vocab(best, vocab) print(best) # print output # ('e', 's') # ('es', 't') # ('est', '</w>') # ('l', 'o') # ('lo', 'w') # ('n', 'e') # ('ne', 'w') # ('new', 'est</w>') # ('low', '</w>') # ('w', 'i') # ('wi', 'd') # ('wid', 'est</w>') # ('low', 'e') # ('lowe', 'r') # ('lower', '</w>')
在之前的算法中,我们已经得到了subword的词表,对该词表按照子词长度由大到小排序。编码时,对于每个单词,遍历排好序的子词词表寻找是否有token是当前单词的子字符串,如果有,则该token是表示单词的tokens之一。
我们从最长的token迭代到最短的token,尝试将每个单词中的子字符串替换为token。 最终,我们将迭代所有tokens,并将所有子字符串替换为tokens。 如果仍然有子字符串没被替换但所有token都已迭代完毕,则将剩余的子词替换为特殊token,如<unk>。
例子
# 给定单词序列 [“the</w>”, “highest</w>”, “mountain</w>”] # 假设已有排好序的subword词表 [“errrr</w>”, “tain</w>”, “moun”, “est</w>”, “high”, “the</w>”, “a</w>”] # 迭代结果 "the</w>" -> ["the</w>"] "highest</w>" -> ["high", "est</w>"] "mountain</w>" -> ["moun", "tain</w>"]
编码的计算量很大。 在实践中,我们可以pre-tokenize所有单词,并在词典中保存单词tokenize的结果。 如果我们看到字典中不存在的未知单词。 我们应用上述编码方法对单词进行tokenize,然后将新单词的tokenization添加到字典中备用。
将所有的tokens拼在一起。
例子:
# 编码序列 [“the</w>”, “high”, “est</w>”, “moun”, “tain</w>”] # 解码序列 “the</w> highest</w> mountain</w>”
WordPiece算法可以看作是BPE的变种。不同点在于,WordPiece基于概率生成新的subword而不是下一最高频字节对。
ULM是另外一种subword分隔算法,它能够输出带概率的多个子词分段。它引入了一个假设:所有subword的出现都是独立的,并且subword序列由subword出现概率的乘积产生。WordPiece和ULM都利用语言模型建立subword词表。