1、继承Thread类,(Thread类实现Runnable接口),来个类图加深印象。
2、实现Runnable接口实现无返回值、实现run()方法,啥时候run,黑话了。
3、实现Callable接口重写call()+FutureTask获取.
public class CustomThread { public static void main(String[] args) { // 自定义线程 new Thread(new Runnable() { @Override public void run() { System.out.println("Custom Run"); System.out.println(Thread.currentThread().getName()); } },"custom-thread-1").start(); } }
4、基于线程池集中管理创建线程系列周期.【本篇文章重点介绍】
1、Executors工具类,是JDK中Doug Lea大佬实现供开发者使用。
随着JDK版本迭代逐渐加入了基于工作窃取算法的线程池了,阿里编码规范也推荐开发者自定义线程池,禁止生产直接使用Executos线程池工具类,因此很有可能造成OOM异常。同时在某些类型的线程池里面,使用无界队列还会导致maxinumPoolSize、keepAliveTime、handler等参数失效。因此目前在大厂的开发规范中会强调禁止使用Executors来创建线程池。这里说道阻塞队列。LinkedBlockingQueue。
2、自定义线程池工具类基于ThreadPoolExecutor实现,那个JDK封装的线程池工具类也是基于这个ThreadPoolExecutor实现的。
public class ConstomThreadPool extends ThreadPoolExecutor{ /** * * @param corePoolSize 核心线程池 * @param maximumPoolSize 线程池最大数量 * @param keepAliveTime 线程存活时间 * @param unit TimeUnit * @param workQueue 工作队列,自定义大小 * @param poolName 线程工厂自定义线程名称 */ public ConstomThreadPool(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, String poolName) { super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue); setThreadFactory(new CustomThreadFactory(poolName, false)); } }
自定义线程工厂类,这样线程命名有开发者控制实现了,这样参数可以做到可配置化,生产环境可以供不同业务模块使用,如果系统配置值不生效,就给一个默认值,更加满足业务需要.
/** * 自定义线程工厂 */ public class CustomThreadFactory implements ThreadFactory { /** * 线程前缀,采用AtomicInteger实现线程编号线程安全自增 */ private final AtomicInteger atomicInteger = new AtomicInteger(1); /** * 线程命名前缀 */ private final String namePrefix; /** * 线程工厂创建的线程是否是守护线程 */ private final boolean isDaemon; public CustomThreadFactory(String prefix, boolean daemin) { if (StringUtils.isNoneBlank(prefix)) { this.namePrefix = prefix; } else { this.namePrefix = "thread_pool"; } // 是否是守护线程 isDaemon = daemin; } @Override public Thread newThread(Runnable r) { Thread thread = new Thread(r, namePrefix + "-" + atomicInteger.getAndIncrement()); thread.setDaemon(isDaemon); // 设置线程优先级 if (thread.getPriority() != Thread.NORM_PRIORITY) { thread.setPriority(Thread.NORM_PRIORITY); } return thread; } }
这里Spring框架提供的自定义线程池工厂类,当然了一些开源包也会提供这样的轮子,这个比较简单了.
@SuppressWarnings("serial") public class CustomizableThreadFactory extends CustomizableThreadCreator implements ThreadFactory { /** * Create a new CustomizableThreadFactory with default thread name prefix. */ public CustomizableThreadFactory() { super(); } /** * Create a new CustomizableThreadFactory with the given thread name prefix. * @param threadNamePrefix the prefix to use for the names of newly created threads */ public CustomizableThreadFactory(String threadNamePrefix) { super(threadNamePrefix); } @Override public Thread newThread(Runnable runnable) { return createThread(runnable); } }
3、SpringBoot框架提供的自定义线程池,基于异步注解@Async名称和一些业务自定义配置项,很好的实现了业务间线程池的隔离。
@Configuration public class ThreadPoolConfig { /** * * @return ThreadPoolTaskExecutor */ @Bean("serviceTaskA") public ThreadPoolTaskExecutor serviceTaskA() { ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor(); executor.setCorePoolSize(2); executor.setMaxPoolSize(2); executor.setQueueCapacity(10); executor.setKeepAliveSeconds(60); executor.setThreadNamePrefix("service-a"); executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy()); return executor; } /** * * @return ThreadPoolTaskExecutor */ @Bean("serviceTaskB") public ThreadPoolTaskExecutor serviceTaskB() { ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor(); executor.setCorePoolSize(2); executor.setMaxPoolSize(2); executor.setQueueCapacity(10); executor.setKeepAliveSeconds(60); executor.setThreadNamePrefix("service-b"); executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy()); return executor; } }
整体来看是Spring框架对JDK的线程池做了封装,公开发者使用,毕竟框架嘛,肯定是把方便留给开发者。
4、并发流线程池。
List<String> list = new ArrayList<>(4); list.add("A"); list.add("B"); list.add("C"); list.add("D"); list.parallelStream().forEach(string -> { string = string + "paralleStream"; System.out.println(Thread.currentThread().getName()+":-> "+string); });
运行实例:
说明:并发流默认使用系统公共的线程池ForkJoinWorkerThread,供整个程序使用。
类图如下,基于分治法,双端窃取算法实现的一种线程池。
ForkJoin实现的了自己的线程工厂命名。
也可以自定义并发流线程,然后提交任务,一般并发流适用于短暂耗时业务,避免拖垮整个线程池业务.
5、实现一个基于系统公用线程池工具类,运行这个系统中的异步业务.
public final class CustomExecutors { /** * 核心线程数大小 */ private static final int CORE_POOL_SIZE=5; /** * 核心线程池大小 */ private static final int MAX_POOL_SIZE=10; /** * 线程存活时间 */ private static final int KEEP_ALIVE_TIME=60; /** * 工作队列大小 */ private static final LinkedBlockingQueue queue=new LinkedBlockingQueue(100); /** * 自定义线程池名前缀 */ private static final String POOL_PREFIX_NAME="Custom-Common-Pool"; private CustomExecutors(){ //throw new XXXXException("un support create pool!"); } private static ConstomThreadPool constomThreadPool; /** * 静态块初始化只执行一次,不关闭,整个系统公用一个线程池 */ static { constomThreadPool=new ConstomThreadPool(CORE_POOL_SIZE,MAX_POOL_SIZE,KEEP_ALIVE_TIME,TimeUnit.SECONDS,queue,POOL_PREFIX_NAME); } /** * 单例模式获取线程池 * @return ExecutorService */ private static ExecutorService getInstance(){ return constomThreadPool; } private static Future<?> submit(Runnable task){ return constomThreadPool.submit(task); } private static <T> Future<T> submit(Runnable task, T result){ return constomThreadPool.submit(task,result); } private static <T> Future<T> submit(Callable<T> task){ return constomThreadPool.submit(task); } private static void execute(Runnable task){ constomThreadPool.execute(task); } }
1、org.apache.tomcat.util.threads;【Tomcat线程池】
2、XXL-JOB分布式任务调度框架的快慢线程池,线程池任务隔离.
public class JobTriggerPoolHelper { private static Logger logger = LoggerFactory.getLogger(JobTriggerPoolHelper.class); // ---------------------- trigger pool ---------------------- // fast/slow thread pool private ThreadPoolExecutor fastTriggerPool = null; private ThreadPoolExecutor slowTriggerPool = null; public void start(){ fastTriggerPool = new ThreadPoolExecutor( 10, XxlJobAdminConfig.getAdminConfig().getTriggerPoolFastMax(), 60L, TimeUnit.SECONDS, new LinkedBlockingQueue<Runnable>(1000), new ThreadFactory() { @Override public Thread newThread(Runnable r) { return new Thread(r, "xxl-job, admin JobTriggerPoolHelper-fastTriggerPool-" + r.hashCode()); } }); slowTriggerPool = new ThreadPoolExecutor( 10, XxlJobAdminConfig.getAdminConfig().getTriggerPoolSlowMax(), 60L, TimeUnit.SECONDS, new LinkedBlockingQueue<Runnable>(2000), new ThreadFactory() { @Override public Thread newThread(Runnable r) { return new Thread(r, "xxl-job, admin JobTriggerPoolHelper-slowTriggerPool-" + r.hashCode()); } }); } public void stop() { //triggerPool.shutdown(); fastTriggerPool.shutdownNow(); slowTriggerPool.shutdownNow(); logger.info(">>>>>>>>> xxl-job trigger thread pool shutdown success."); } // job timeout count private volatile long minTim = System.currentTimeMillis()/60000; // ms > min private volatile ConcurrentMap<Integer, AtomicInteger> jobTimeoutCountMap = new ConcurrentHashMap<>(); /** * add trigger */ public void addTrigger(final int jobId, final TriggerTypeEnum triggerType, final int failRetryCount, final String executorShardingParam, final String executorParam, final String addressList) { // choose thread pool ThreadPoolExecutor triggerPool_ = fastTriggerPool; AtomicInteger jobTimeoutCount = jobTimeoutCountMap.get(jobId); if (jobTimeoutCount!=null && jobTimeoutCount.get() > 10) { // job-timeout 10 times in 1 min triggerPool_ = slowTriggerPool; } // trigger triggerPool_.execute(new Runnable() { @Override public void run() { long start = System.currentTimeMillis(); try { // do trigger XxlJobTrigger.trigger(jobId, triggerType, failRetryCount, executorShardingParam, executorParam, addressList); } catch (Exception e) { logger.error(e.getMessage(), e); } finally { // check timeout-count-map long minTim_now = System.currentTimeMillis()/60000; if (minTim != minTim_now) { minTim = minTim_now; jobTimeoutCountMap.clear(); } // incr timeout-count-map long cost = System.currentTimeMillis()-start; if (cost > 500) { // ob-timeout threshold 500ms AtomicInteger timeoutCount = jobTimeoutCountMap.putIfAbsent(jobId, new AtomicInteger(1)); if (timeoutCount != null) { timeoutCount.incrementAndGet(); } } } } }); } // ---------------------- helper ---------------------- private static JobTriggerPoolHelper helper = new JobTriggerPoolHelper(); public static void toStart() { helper.start(); } public static void toStop() { helper.stop(); } /** * @param jobId * @param triggerType * @param failRetryCount * >=0: use this param * <0: use param from job info config * @param executorShardingParam * @param executorParam * null: use job param * not null: cover job param */ public static void trigger(int jobId, TriggerTypeEnum triggerType, int failRetryCount, String executorShardingParam, String executorParam, String addressList) { helper.addTrigger(jobId, triggerType, failRetryCount, executorShardingParam, executorParam, addressList); } }
①、定义两个线程池,一个是fastTriggerPool,另一个是slowTriggerPool。
②、定义一个容器ConcurrentMap,存放每个任务的执行慢次数,60秒后自动清空该容器。
③、在线程的run()方法中计算每个任务的耗时,如果大于500ms,则任务的慢执行次数+1。
3、基于线程池动态监控动态线程池
引用图片,线程池常见问题
还有比较多啦,例如ES的基于JDK的线程池,Dubbo中等。