kube-scheduler组件是kubernetes中的核心组件之一,主要负责pod资源对象的调度工作,具体来说,kube-scheduler组件负责根据调度算法(包括预选算法和优选算法)将未调度的pod调度到合适的最优的node节点上。
kube-scheduler的大致组成和处理流程如下图,kube-scheduler对pod、node等对象进行了list/watch,根据informer将未调度的pod放入待调度pod队列,并根据informer构建调度器cache(用于快速获取需要的node等对象),然后sched.scheduleOne
方法为kube-scheduler组件调度pod的核心处理逻辑所在,从未调度pod队列中取出一个pod,经过预选与优选算法,最终选出一个最优node,然后更新cache并异步执行bind操作,也就是更新pod的nodeName字段,至此一个pod的调度工作完成。
kube-scheduler组件的分析将分为两大块进行,分别是:
(1)kube-scheduler初始化与启动分析;
(2)kube-scheduler核心处理逻辑分析。
本篇先进行kube-scheduler组件的初始化与启动分析,下篇再进行核心处理逻辑分析。
https://github.com/kubernetes/kubernetes/releases/tag/v1.17.4
直接看到kube-scheduler的NewSchedulerCommand函数,作为kube-scheduler初始化与启动分析的入口。
NewSchedulerCommand函数主要逻辑:
(1)初始化组件默认启动参数值;
(2)定义kube-scheduler组件的运行命令方法,即runCommand函数(runCommand函数最终调用Run函数来运行启动kube-scheduler组件,下面会进行Run函数的分析);
(3)kube-scheduler组件启动命令行参数解析。
// cmd/kube-scheduler/app/server.go func NewSchedulerCommand(registryOptions ...Option) *cobra.Command { // 1.初始化组件默认启动参数值 opts, err := options.NewOptions() if err != nil { klog.Fatalf("unable to initialize command options: %v", err) } // 2.定义kube-scheduler组件的运行命令方法,即runCommand函数 cmd := &cobra.Command{ Use: "kube-scheduler", Long: `The Kubernetes scheduler is a policy-rich, topology-aware, workload-specific function that significantly impacts availability, performance, and capacity. The scheduler needs to take into account individual and collective resource requirements, quality of service requirements, hardware/software/policy constraints, affinity and anti-affinity specifications, data locality, inter-workload interference, deadlines, and so on. Workload-specific requirements will be exposed through the API as necessary.`, Run: func(cmd *cobra.Command, args []string) { if err := runCommand(cmd, args, opts, registryOptions...); err != nil { fmt.Fprintf(os.Stderr, "%v\n", err) os.Exit(1) } }, } // 3.组件命令行启动参数解析 fs := cmd.Flags() namedFlagSets := opts.Flags() verflag.AddFlags(namedFlagSets.FlagSet("global")) globalflag.AddGlobalFlags(namedFlagSets.FlagSet("global"), cmd.Name()) for _, f := range namedFlagSets.FlagSets { fs.AddFlagSet(f) } ... }
runCommand定义了kube-scheduler组件的运行命令函数,主要看到以下两个逻辑:
(1)调用algorithmprovider.ApplyFeatureGates方法,根据FeatureGate是否开启,决定是否追加注册相应的预选和优选算法;
(2)调用Run,运行启动kube-scheduler组件。
// cmd/kube-scheduler/app/server.go // runCommand runs the scheduler. func runCommand(cmd *cobra.Command, args []string, opts *options.Options, registryOptions ...Option) error { ... // Apply algorithms based on feature gates. // TODO: make configurable? algorithmprovider.ApplyFeatureGates() // Configz registration. if cz, err := configz.New("componentconfig"); err == nil { cz.Set(cc.ComponentConfig) } else { return fmt.Errorf("unable to register configz: %s", err) } ctx, cancel := context.WithCancel(context.Background()) defer cancel() return Run(ctx, cc, registryOptions...) }
根据FeatureGate是否开启,决定是否追加注册相应的预选和优选算法。
// pkg/scheduler/algorithmprovider/plugins.go import ( "k8s.io/kubernetes/pkg/scheduler/algorithmprovider/defaults" ) func ApplyFeatureGates() func() { return defaults.ApplyFeatureGates() }
plugins.go文件import了defaults包,所以看defaults.ApplyFeatureGates方法之前,先来看到defaults包的init函数,主要做了内置调度算法的注册工作,包括预选算法和优选算法。
(1)先来看到defaults包中defaults.go文件init函数。
// pkg/scheduler/algorithmprovider/defaults/defaults.go func init() { registerAlgorithmProvider(defaultPredicates(), defaultPriorities()) }
预算算法:
// pkg/scheduler/algorithmprovider/defaults/defaults.go func defaultPredicates() sets.String { return sets.NewString( predicates.NoVolumeZoneConflictPred, predicates.MaxEBSVolumeCountPred, predicates.MaxGCEPDVolumeCountPred, predicates.MaxAzureDiskVolumeCountPred, predicates.MaxCSIVolumeCountPred, predicates.MatchInterPodAffinityPred, predicates.NoDiskConflictPred, predicates.GeneralPred, predicates.PodToleratesNodeTaintsPred, predicates.CheckVolumeBindingPred, predicates.CheckNodeUnschedulablePred, ) }
优选算法:
// pkg/scheduler/algorithmprovider/defaults/defaults.go func defaultPriorities() sets.String { return sets.NewString( priorities.SelectorSpreadPriority, priorities.InterPodAffinityPriority, priorities.LeastRequestedPriority, priorities.BalancedResourceAllocation, priorities.NodePreferAvoidPodsPriority, priorities.NodeAffinityPriority, priorities.TaintTolerationPriority, priorities.ImageLocalityPriority, ) }
registerAlgorithmProvider函数注册 algorithm provider,algorithm provider存储了所有类型的调度算法列表,包括预选算法和优选算法(只存储了算法key列表,不包含算法本身)。
// pkg/scheduler/algorithmprovider/defaults/defaults.go func registerAlgorithmProvider(predSet, priSet sets.String) { // Registers algorithm providers. By default we use 'DefaultProvider', but user can specify one to be used // by specifying flag. scheduler.RegisterAlgorithmProvider(scheduler.DefaultProvider, predSet, priSet) // Cluster autoscaler friendly scheduling algorithm. scheduler.RegisterAlgorithmProvider(ClusterAutoscalerProvider, predSet, copyAndReplace(priSet, priorities.LeastRequestedPriority, priorities.MostRequestedPriority)) }
最终将注册的algorithm provider赋值给变量algorithmProviderMap(存储了所有类型的调度算法列表),该变量是该包的全局变量。
// pkg/scheduler/algorithm_factory.go // RegisterAlgorithmProvider registers a new algorithm provider with the algorithm registry. func RegisterAlgorithmProvider(name string, predicateKeys, priorityKeys sets.String) string { schedulerFactoryMutex.Lock() defer schedulerFactoryMutex.Unlock() validateAlgorithmNameOrDie(name) algorithmProviderMap[name] = AlgorithmProviderConfig{ FitPredicateKeys: predicateKeys, PriorityFunctionKeys: priorityKeys, } return name }
// pkg/scheduler/algorithm_factory.go var ( ... algorithmProviderMap = make(map[string]AlgorithmProviderConfig) ... )
(2)再来看到defaults包中register_predicates.go文件的init函数,主要是注册了预选算法。
// pkg/scheduler/algorithmprovider/defaults/register_predicates.go func init() { ... // Fit is defined based on the absence of port conflicts. // This predicate is actually a default predicate, because it is invoked from // predicates.GeneralPredicates() scheduler.RegisterFitPredicate(predicates.PodFitsHostPortsPred, predicates.PodFitsHostPorts) // Fit is determined by resource availability. // This predicate is actually a default predicate, because it is invoked from // predicates.GeneralPredicates() scheduler.RegisterFitPredicate(predicates.PodFitsResourcesPred, predicates.PodFitsResources) ...
(3)最后看到defaults包中register_priorities.go文件的init函数,主要是注册了优选算法。
// pkg/scheduler/algorithmprovider/defaults/register_priorities.go func init() { ... // Prioritize nodes by least requested utilization. scheduler.RegisterPriorityMapReduceFunction(priorities.LeastRequestedPriority, priorities.LeastRequestedPriorityMap, nil, 1) // Prioritizes nodes to help achieve balanced resource usage scheduler.RegisterPriorityMapReduceFunction(priorities.BalancedResourceAllocation, priorities.BalancedResourceAllocationMap, nil, 1) ... }
预选算法与优选算法注册的最后结果,都是赋值给全局变量,预选算法注册后赋值给fitPredicateMap,优选算法注册后赋值给priorityFunctionMap。
// pkg/scheduler/algorithm_factory.go var ( ... fitPredicateMap = make(map[string]FitPredicateFactory) ... priorityFunctionMap = make(map[string]PriorityConfigFactory) ... )
主要用于判断是否开启特定的FeatureGate,然后追加注册相应的预选和优选算法。
// pkg/scheduler/algorithmprovider/defaults/defaults.go func ApplyFeatureGates() (restore func()) { ... // Only register EvenPodsSpread predicate & priority if the feature is enabled if utilfeature.DefaultFeatureGate.Enabled(features.EvenPodsSpread) { klog.Infof("Registering EvenPodsSpread predicate and priority function") // register predicate scheduler.InsertPredicateKeyToAlgorithmProviderMap(predicates.EvenPodsSpreadPred) scheduler.RegisterFitPredicate(predicates.EvenPodsSpreadPred, predicates.EvenPodsSpreadPredicate) // register priority scheduler.InsertPriorityKeyToAlgorithmProviderMap(priorities.EvenPodsSpreadPriority) scheduler.RegisterPriorityMapReduceFunction( priorities.EvenPodsSpreadPriority, priorities.CalculateEvenPodsSpreadPriorityMap, priorities.CalculateEvenPodsSpreadPriorityReduce, 1, ) } // Prioritizes nodes that satisfy pod's resource limits if utilfeature.DefaultFeatureGate.Enabled(features.ResourceLimitsPriorityFunction) { klog.Infof("Registering resourcelimits priority function") scheduler.RegisterPriorityMapReduceFunction(priorities.ResourceLimitsPriority, priorities.ResourceLimitsPriorityMap, nil, 1) // Register the priority function to specific provider too. scheduler.InsertPriorityKeyToAlgorithmProviderMap(scheduler.RegisterPriorityMapReduceFunction(priorities.ResourceLimitsPriority, priorities.ResourceLimitsPriorityMap, nil, 1)) } ... }
Run函数主要是根据配置参数,运行启动kube-scheduler组件,其核心逻辑如下:
(1)准备好event上报client,用于将kube-scheduler产生的各种event上报给api-server;
(2)调用scheduler.New方法,实例化scheduler对象;
(3)启动event上报管理器;
(4)设置kube-scheduler组件的健康检查,并启动健康检查以及与metrics相关的http服务;
(5)启动所有前面注册过的对象的infomer,开始同步对象资源;
(6)调用WaitForCacheSync,等待所有informer的对象同步完成,使得本地缓存数据与etcd中的数据一致;
(7)根据组件启动参数判断是否要开启leader选举功能;
(8)调用sched.Run方法启动kube-scheduler组件(sched.Run将作为下面kube-scheduler核心处理逻辑分析的入口)。
// cmd/kube-scheduler/app/server.go func Run(ctx context.Context, cc schedulerserverconfig.CompletedConfig, outOfTreeRegistryOptions ...Option) error { // To help debugging, immediately log version klog.V(1).Infof("Starting Kubernetes Scheduler version %+v", version.Get()) outOfTreeRegistry := make(framework.Registry) for _, option := range outOfTreeRegistryOptions { if err := option(outOfTreeRegistry); err != nil { return err } } // 1.准备好event上报client,用于将kube-scheduler产生的各种event上报给api-server // Prepare event clients. if _, err := cc.Client.Discovery().ServerResourcesForGroupVersion(eventsv1beta1.SchemeGroupVersion.String()); err == nil { cc.Broadcaster = events.NewBroadcaster(&events.EventSinkImpl{Interface: cc.EventClient.Events("")}) cc.Recorder = cc.Broadcaster.NewRecorder(scheme.Scheme, cc.ComponentConfig.SchedulerName) } else { recorder := cc.CoreBroadcaster.NewRecorder(scheme.Scheme, v1.EventSource{Component: cc.ComponentConfig.SchedulerName}) cc.Recorder = record.NewEventRecorderAdapter(recorder) } // 2.调用scheduler.New方法,实例化scheduler对象 // Create the scheduler. sched, err := scheduler.New(cc.Client, cc.InformerFactory, cc.PodInformer, cc.Recorder, ctx.Done(), scheduler.WithName(cc.ComponentConfig.SchedulerName), scheduler.WithAlgorithmSource(cc.ComponentConfig.AlgorithmSource), scheduler.WithHardPodAffinitySymmetricWeight(cc.ComponentConfig.HardPodAffinitySymmetricWeight), scheduler.WithPreemptionDisabled(cc.ComponentConfig.DisablePreemption), scheduler.WithPercentageOfNodesToScore(cc.ComponentConfig.PercentageOfNodesToScore), scheduler.WithBindTimeoutSeconds(cc.ComponentConfig.BindTimeoutSeconds), scheduler.WithFrameworkOutOfTreeRegistry(outOfTreeRegistry), scheduler.WithFrameworkPlugins(cc.ComponentConfig.Plugins), scheduler.WithFrameworkPluginConfig(cc.ComponentConfig.PluginConfig), scheduler.WithPodMaxBackoffSeconds(cc.ComponentConfig.PodMaxBackoffSeconds), scheduler.WithPodInitialBackoffSeconds(cc.ComponentConfig.PodInitialBackoffSeconds), ) if err != nil { return err } // 3.启动event上报管理器 // Prepare the event broadcaster. if cc.Broadcaster != nil && cc.EventClient != nil { cc.Broadcaster.StartRecordingToSink(ctx.Done()) } if cc.CoreBroadcaster != nil && cc.CoreEventClient != nil { cc.CoreBroadcaster.StartRecordingToSink(&corev1.EventSinkImpl{Interface: cc.CoreEventClient.Events("")}) } // 4.设置kube-scheduler组件的健康检查,并启动健康检查以及与metrics相关的http服务 // Setup healthz checks. var checks []healthz.HealthChecker if cc.ComponentConfig.LeaderElection.LeaderElect { checks = append(checks, cc.LeaderElection.WatchDog) } // Start up the healthz server. if cc.InsecureServing != nil { separateMetrics := cc.InsecureMetricsServing != nil handler := buildHandlerChain(newHealthzHandler(&cc.ComponentConfig, separateMetrics, checks...), nil, nil) if err := cc.InsecureServing.Serve(handler, 0, ctx.Done()); err != nil { return fmt.Errorf("failed to start healthz server: %v", err) } } if cc.InsecureMetricsServing != nil { handler := buildHandlerChain(newMetricsHandler(&cc.ComponentConfig), nil, nil) if err := cc.InsecureMetricsServing.Serve(handler, 0, ctx.Done()); err != nil { return fmt.Errorf("failed to start metrics server: %v", err) } } if cc.SecureServing != nil { handler := buildHandlerChain(newHealthzHandler(&cc.ComponentConfig, false, checks...), cc.Authentication.Authenticator, cc.Authorization.Authorizer) // TODO: handle stoppedCh returned by c.SecureServing.Serve if _, err := cc.SecureServing.Serve(handler, 0, ctx.Done()); err != nil { // fail early for secure handlers, removing the old error loop from above return fmt.Errorf("failed to start secure server: %v", err) } } // 5.启动所有前面注册过的对象的informer,开始同步对象资源 // Start all informers. go cc.PodInformer.Informer().Run(ctx.Done()) cc.InformerFactory.Start(ctx.Done()) // 6.等待所有informer的对象同步完成,使得本地缓存数据与etcd中的数据一致 // Wait for all caches to sync before scheduling. cc.InformerFactory.WaitForCacheSync(ctx.Done()) // 7.根据组件启动参数判断是否要开启leader选举功能 // If leader election is enabled, runCommand via LeaderElector until done and exit. if cc.LeaderElection != nil { cc.LeaderElection.Callbacks = leaderelection.LeaderCallbacks{ OnStartedLeading: sched.Run, OnStoppedLeading: func() { klog.Fatalf("leaderelection lost") }, } leaderElector, err := leaderelection.NewLeaderElector(*cc.LeaderElection) if err != nil { return fmt.Errorf("couldn't create leader elector: %v", err) } leaderElector.Run(ctx) return fmt.Errorf("lost lease") } // 8.调用sched.Run方法启动kube-scheduler组件 // Leader election is disabled, so runCommand inline until done. sched.Run(ctx) return fmt.Errorf("finished without leader elect") }
scheduler对象的实例化分为3个部分,分别是:
(1)实例化pod、node、pvc、pv等对象的infomer;
(2)调用configurator.CreateFromConfig,根据前面注册的内置调度算法(或根据用户提供的调度策略),实例化scheduler;
(3)给infomer对象注册eventHandler;
// pkg/scheduler/scheduler.go func New(client clientset.Interface, informerFactory informers.SharedInformerFactory, podInformer coreinformers.PodInformer, recorder events.EventRecorder, stopCh <-chan struct{}, opts ...Option) (*Scheduler, error) { stopEverything := stopCh if stopEverything == nil { stopEverything = wait.NeverStop } options := defaultSchedulerOptions for _, opt := range opts { opt(&options) } // 1.实例化node、pvc、pv等对象的infomer schedulerCache := internalcache.New(30*time.Second, stopEverything) volumeBinder := volumebinder.NewVolumeBinder( client, informerFactory.Core().V1().Nodes(), informerFactory.Storage().V1().CSINodes(), informerFactory.Core().V1().PersistentVolumeClaims(), informerFactory.Core().V1().PersistentVolumes(), informerFactory.Storage().V1().StorageClasses(), time.Duration(options.bindTimeoutSeconds)*time.Second, ) registry := options.frameworkDefaultRegistry if registry == nil { registry = frameworkplugins.NewDefaultRegistry(&frameworkplugins.RegistryArgs{ VolumeBinder: volumeBinder, }) } registry.Merge(options.frameworkOutOfTreeRegistry) snapshot := nodeinfosnapshot.NewEmptySnapshot() configurator := &Configurator{ client: client, informerFactory: informerFactory, podInformer: podInformer, volumeBinder: volumeBinder, schedulerCache: schedulerCache, StopEverything: stopEverything, hardPodAffinitySymmetricWeight: options.hardPodAffinitySymmetricWeight, disablePreemption: options.disablePreemption, percentageOfNodesToScore: options.percentageOfNodesToScore, bindTimeoutSeconds: options.bindTimeoutSeconds, podInitialBackoffSeconds: options.podInitialBackoffSeconds, podMaxBackoffSeconds: options.podMaxBackoffSeconds, enableNonPreempting: utilfeature.DefaultFeatureGate.Enabled(kubefeatures.NonPreemptingPriority), registry: registry, plugins: options.frameworkPlugins, pluginConfig: options.frameworkPluginConfig, pluginConfigProducerRegistry: options.frameworkConfigProducerRegistry, nodeInfoSnapshot: snapshot, algorithmFactoryArgs: AlgorithmFactoryArgs{ SharedLister: snapshot, InformerFactory: informerFactory, VolumeBinder: volumeBinder, HardPodAffinitySymmetricWeight: options.hardPodAffinitySymmetricWeight, }, configProducerArgs: &frameworkplugins.ConfigProducerArgs{}, } metrics.Register() // 2.调用configurator.CreateFromConfig,根据前面注册的内置调度算法(或根据用户提供的调度策略),实例化scheduler var sched *Scheduler source := options.schedulerAlgorithmSource switch { case source.Provider != nil: // Create the config from a named algorithm provider. sc, err := configurator.CreateFromProvider(*source.Provider) if err != nil { return nil, fmt.Errorf("couldn't create scheduler using provider %q: %v", *source.Provider, err) } sched = sc case source.Policy != nil: // Create the config from a user specified policy source. policy := &schedulerapi.Policy{} switch { case source.Policy.File != nil: if err := initPolicyFromFile(source.Policy.File.Path, policy); err != nil { return nil, err } case source.Policy.ConfigMap != nil: if err := initPolicyFromConfigMap(client, source.Policy.ConfigMap, policy); err != nil { return nil, err } } sc, err := configurator.CreateFromConfig(*policy) if err != nil { return nil, fmt.Errorf("couldn't create scheduler from policy: %v", err) } sched = sc default: return nil, fmt.Errorf("unsupported algorithm source: %v", source) } // Additional tweaks to the config produced by the configurator. sched.Recorder = recorder sched.DisablePreemption = options.disablePreemption sched.StopEverything = stopEverything sched.podConditionUpdater = &podConditionUpdaterImpl{client} sched.podPreemptor = &podPreemptorImpl{client} sched.scheduledPodsHasSynced = podInformer.Informer().HasSynced // 3.给infomer对象注册eventHandler AddAllEventHandlers(sched, options.schedulerName, informerFactory, podInformer) return sched, nil }
kube-scheduler组件是kubernetes中的核心组件之一,主要负责pod资源对象的调度工作,具体来说,kube-scheduler组件负责根据调度算法(包括预选算法和优选算法)将未调度的pod调度到合适的最优的node节点上。
kube-scheduler的大致组成和处理流程如下图,kube-scheduler对pod、node等对象进行了list/watch,根据informer将未调度的pod放入待调度pod队列,并根据informer构建调度器cache(用于快速获取需要的node等对象),然后sched.scheduleOne
方法为kube-scheduler组件调度pod的核心处理逻辑所在,从未调度pod队列中取出一个pod,经过预选与优选算法,最终选出一个最优node,然后更新cache并异步执行bind操作,也就是更新pod的nodeName字段,至此一个pod的调度工作完成。