Java教程

【SLAM基础】【矩阵】矩阵基础相关概念总结

本文主要是介绍【SLAM基础】【矩阵】矩阵基础相关概念总结,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

矩阵相关概念

线性相关与线性无关

\[c_1u_1 + c_2u_2 + ... + c_nu_n = 0 \]

其中可以有这样一组解:

\[c_1 = c_2 = ... = c_n = 0 \]

若只有这样一种解 则认为 \(u_1, u_2, ... ,u_n\) 线性无关
若有0以外的解 则认为线性相关

奇异矩阵

\[Ax = 0 \]

等价于

\[a_1x_1 + a_2x_2 + ... + a_nx_n = 0 \]

其中A等于 \([a_1, ... , a_n]\) 若只有0解 则 \(a_1, ..., a_n\) 线性无关 此时A为非奇异矩阵
若有除0以外的解 A是奇异矩阵

范数

向量范数:描述向量的长度
对向量求范数

\[||X||_2 \]

X为向量 它等于每一项的平方求和再开根号
矩阵范数:描述矩阵的大小

\[||A||_2 \]

也是矩阵中的每一项的平方求和再开根号

行列式

\[det(A) = |A| \]

行列式不等于0的矩阵称为非奇异矩阵
行列式不等于0的矩阵才有逆矩阵
行列式不等于0称为满秩

特征值

\[Lu = \lambda u \]

若能找到 \(n * 1\) 的非零解
则 \(L\) 为特征向量 \(\lambda\) 为 \(L\) 对应的特征值 \(u\) 的大小为 \(n * 1\)
可以求出很多特征值
若 \(L\) 有一个特征值为0 则 \(L\) 一定是奇异矩阵
奇异的非零矩阵一定存在非零的特征值

矩阵的迹

\[tr(A) \]

矩阵的迹等于矩阵所有对角元素(从左上角到右下角对角线上的元素)之和

矩阵的秩

\[rank(A) \]

\(A_{mn}\) 的秩定义为该矩阵中线性无关的行或列的数目 线性无关的行和列的数目相同

欠定与超定

欠定方程:方程个数小于未知参数个数
欠定方程特点:无法求出唯一解

超定方程:方程个数大于未知参数个数
超定方程特点:无法求出满足全部方程的精确解

这篇关于【SLAM基础】【矩阵】矩阵基础相关概念总结的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!