写的简单。主要是留给自己做复习资料。
给定一个含有 \(n\) 个数的序列 \(a_1,a_2 \dots a_n\),需要支持两种操作:
Q l r k
表示查询下标在区间 \([l,r]\) 中的第 \(k\) 小的数。C x y
表示将 \(a_x\) 改为 \(y\)。引入整体二分。
其实就是我们对于二分到的一个值域 mid,去离线针对所有的询问进行 check。
具体是利用一些数据结构。
然后根据 check 和 mid 的大小将询问分为两拨,再分治下去解决问题。
参考于 OI-wiki 的板子很精简且思路便于理解。
#include <cstdio> int Abs (int x) { return x < 0 ? -x : x; } int Max (int x, int y) { return x > y ? x : y; } int Min (int x, int y) { return x < y ? x : y; } int Read () { int x = 0, k = 1; char s = getchar(); while (s < '0' || s > '9') { if(s == '-') k = -1; s = getchar (); } while ('0' <= s && s <= '9') x = (x << 3) + (x << 1) + (s ^ 48), s = getchar (); return x * k; } void Write (int x) { if(x < 0) x = -x, putchar ('-'); if(x > 9) Write (x / 10); putchar (x % 10 + '0'); } void Print (int x, char s) { Write (x), putchar (s); } const int MAXN = 2e5 + 5; char Opt[3]; int Ans[MAXN], BIT[MAXN], a[MAXN], n, m; int Low_Bit (int x) { return x & -x; } void Update (int k, int x) { for (int i = k; i <= n; i += Low_Bit (i)) BIT[i] += x; } int Query (int k) { int Res = 0; for (int i = k; i >= 1; i -= Low_Bit (i)) Res += BIT[i]; return Res; } struct Node { bool Type; int Id, x, y, k; Node () {} Node (bool T, int I, int X, int Y, int K) { Type = T, Id = I, x = X, y = Y, k = K; } } q[MAXN], Tmp[2][MAXN]; void Solve (int l, int r, int L, int R) { if (l > r || L > R) return ; if (L == R) { for (int i = l; i <= r; i++) if (q[i].Type) Ans[q[i].Id] = L; return ; } // printf ("%d %d %d %d : //\n", l, r, L, R); // for (int i = l; i <= r; i++) // printf ("%d %d %d %d %d\n", q[i].Type, q[i].Id, q[i].x, q[i].y, q[i].k); // printf ("//\n"); int Mid = (L + R) >> 1, Cnt0 = 0, Cnt1 = 0; for (int i = l; i <= r; i++) if (q[i].Type) { int Check = Query (q[i].y) - Query (q[i].x - 1); if (q[i].k <= Check) Tmp[0][++Cnt0] = q[i]; else q[i].k -= Check, Tmp[1][++Cnt1] = q[i]; } else { if (q[i].y <= Mid) Update (q[i].x, q[i].k), Tmp[0][++Cnt0] = q[i]; else Tmp[1][++Cnt1] = q[i]; } for (int i = 1; i <= Cnt0; i++) if (!Tmp[0][i].Type) Update (Tmp[0][i].x, -Tmp[0][i].k); for (int i = 1; i <= Cnt0; i++) q[l + i - 1] = Tmp[0][i]; for (int i = 1; i <= Cnt1; i++) q[l + Cnt0 + i - 1] = Tmp[1][i]; Solve (l, l + Cnt0 - 1, L, Mid), Solve (l + Cnt0, r, Mid + 1, R); } int main () { n = Read (), m = Read (); int p = 0, Tot = 0; for (int i = 1, x; i <= n; i++) x = Read (), q[++p] = Node (0, 0, i, x, 1), a[i] = x; for (int i = 1, x, y; i <= m; i++) { scanf ("%s", Opt + 1), x = Read (), y = Read (); if (Opt[1] == 'Q') { int k = Read (); q[++p] = Node (1, ++Tot, x, y, k); } else q[++p] = Node (0, 0, x, a[x], -1), q[++p] = Node (0, 0, x, y, 1), a[x] = y; } Solve (1, p, 0, 1e9); for (int i = 1; i <= Tot; i++) Print (Ans[i], '\n'); return 0; }