Problem Link
\(\quad\)这玩意的本质就是最小生成树。如果 a 对 b 有优惠,那么我们将 a 向 b 连一条边,然后将 0 向所有节点连一条权值为 A 的边,最后跑一遍最小生成树即可。
#include<bits/stdc++.h> using namespace std; struct node { int u, v, w; } e[250000]; int a, b, k, tot = 1, ans, f[555]; bool cmp(node x, node y) { return x.w < y.w; } int find(int x) { if (f[x] == x) return x; return f[x] = find(f[x]); } int hb(int x, int y) { int xx = find(x); int yy = find(y); if (xx != yy) f[xx] = yy; } void build(int x, int y, int z) { k++; e[k].u = x; e[k].v = y; e[k].w = z; } void kruskal() { int j = 1; while (j <= k && tot <= b) { if (find(e[j].u) != find(e[j].v)) { tot++; ans += e[j].w; hb(e[j].u, e[j].v); } j++; } } int main() { scanf("%d%d", &a, &b); for (int i = 1; i <= b; i++) { for (int j = 1; j <= b; j++) { int x; scanf("%d", &x); if (i < j && x != 0) build(i, j, x); } } for (int i = 1; i <= b; i++) build(0, i, a); for (int i = 0; i <= b; i++) f[i] = i; sort(e + 1, e + k + 1, cmp); kruskal(); printf("%d\n", ans); return 0; }
Problem Link
\(\quad\)利用 \(Kruskal\) 算法的思想去解决就可以了。
#include<bits/stdc++.h> #define N 1005 using namespace std; int n, m, k, x, y, l, sum, ans; int fa[N]; struct Edge { int u, v, w; bool operator<(Edge a) const { return w < a.w; } } edge[N * 10]; int find(int x) { return fa[x] == x ? fa[x] : fa[x] = find(fa[x]); } int main() { scanf("%d%d%d", &n, &m, &k); for (int i = 1; i <= n; i++) fa[i] = i; for (int i = 1; i <= m; i++) { scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].w); } sort(edge + 1, edge + m + 1); for (int i = 1; i <= m; i++) { int fx = find(edge[i].u), fy = find(edge[i].v); if (fx != fy) { fa[fx] = fy; sum++; ans += edge[i].w; } if (sum == n - k) { printf("%d", ans); return 0; } } puts("No Answer"); return 0; }
Problem Link
\(\quad\)其实本质就是一个最大瓶颈生成树,所以求一个最大生成树,然后用倍增去求就可以了。当然这个题目也是 \(Kruskal\) 重构树的经典应用。
#include<bits/stdc++.h> #define fo(i, j, k) for(register int i=j;i<=k;i++) #define fd(i, j, k) for(register int i=j;i>=k;i--) #define ll long long #define re register #define file(x) freopen("x.in","r",stdin);freopen("x.out","w",stdout); #define ios ios::sync_with_stdio(false) using namespace std; const int MAXN = 10005; const int INF = 99999999; int cnt = 0, ans = 0, n, m, head[MAXN], deep[MAXN], f[MAXN], fa[MAXN][21], w[MAXN][21]; bool vis[MAXN]; struct edge1 { int u, v, w; } e1[100005]; struct edge2 { int v, nxt, w; } e2[100005]; void add(int u, int v, int w) { cnt++; e2[cnt].v = v; e2[cnt].nxt = head[u]; e2[cnt].w = w; head[u] = cnt; } bool cmp(edge1 a, edge1 b) { return a.w > b.w; } int find(int x) { while (x != f[x]) x = f[x] = f[f[x]]; return x; } void dfs(int node) { vis[node] = 1; for (int i = head[node]; i; i = e2[i].nxt) { int ev = e2[i].v; if (vis[ev]) continue; deep[ev] = deep[node] + 1; fa[ev][0] = node; w[ev][0] = e2[i].w; dfs(ev); } } void kruskal() { ans = 0; sort(e1 + 1, e1 + 1 + m, cmp); fo(i, 1, m) { int eu = find(e1[i].u); int ev = find(e1[i].v); if (eu == ev) continue; f[ev] = eu; add(e1[i].u, e1[i].v, e1[i].w); add(e1[i].v, e1[i].u, e1[i].w); ans++; if (ans == n - 1) break; } } int lca(int x, int y) { if (find(x) != find(y)) return -1; int ans = INF; if (deep[x] > deep[y]) swap(x, y); for (int i = 20; i >= 0; i--) if (deep[fa[y][i]] >= deep[x]) { ans = min(ans, w[y][i]); y = fa[y][i]; } if (x == y) return ans; fd(i, 20, 0) { if (fa[x][i] != fa[y][i]) { ans = min(ans, min(w[x][i], w[y][i])); x = fa[x][i]; y = fa[y][i]; } } ans = min(ans, min(w[x][0], w[y][0])); return ans; } int main() { ios; cin >> n >> m; fo(i, 1, n) f[i] = i; fo(i, 1, m) cin >> e1[i].u >> e1[i].v >> e1[i].w; kruskal(); fo(i, 1, n) { if (!vis[i]) { deep[i] = 1; dfs(i); fa[i][0] = i; w[i][0] = INF; } } fo(i, 1, 20)fo(j, 1, n) { fa[j][i] = fa[fa[j][i - 1]][i - 1]; w[j][i] = min(w[j][i - 1], w[fa[j][i - 1]][i - 1]); } int q; cin >> q; fo(i, 1, q) { int x, y; cin >> x >> y; cout << lca(x, y) << endl; } return 0; }
Problem Link
\(\quad\)floyd
最短路裸题
#include<bits/stdc++.h> #define maxn 101 #define maxm 10001 using namespace std; int ans, f[maxn][maxn], m[maxn][maxn], mm, n, a[maxm]; inline void write(int X) { if (X < 0) { X = ~(X - 1); putchar('-'); } if (X > 9) write(X / 10); putchar(X % 10 + '0'); } inline int read() { int X = 0; bool flag = 1; char ch = getchar(); while (ch < '0' || ch > '9') { if (ch == '-') flag = 0; ch = getchar(); } while (ch >= '0' && ch <= '9') { X = (X << 1) + (X << 3) + ch - '0'; ch = getchar(); } if (flag) return X; return ~(X - 1); } int main() { memset(m, 0X3F, sizeof(m)); n = read(); mm = read(); for (int i = 1; i <= mm; i++) a[i] = read(); for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) m[i][j] = read(); for (int k = 1; k <= n; k++) for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) m[i][j] = min(m[i][j], m[i][k] + m[k][j]); int p = 1; for (int i = 1; i <= mm; i++) { ans += m[p][a[i]]; p = a[i]; } cout << ans; return 0; }
Problem Link
\(\quad\)略
#include<bits/stdc++.h> using namespace std; const int maxn = 1000100l; int n, m, fa[maxn], tot, cnt, ans; struct edge { int v, w, nxt, u; } e[maxn]; void add(int u, int v, int w) { tot++; e[tot].u = u; e[tot].v = v; e[tot].w = w; } bool cmp(edge a, edge b) { return a.w < b.w; } int find(int x) { return (x == fa[x]) ? x : find(fa[x]); } void kruskal() { sort(e + 1, e + 1 + m, cmp); for (int i = 1; i <= m; i++) { int eu = find(e[i].u); int ev = find(e[i].v); if ((eu) == (ev)) continue; fa[eu] = ev; ans += e[i].w; if (++cnt == n - 1) break; } } int main() { cin >> n >> m; for (int i = 1; i <= n; i++) fa[i] = i; for (int i = 1; i <= m; i++) { int x, y, z; cin >> x >> y >> z; add(x, y, z); } kruskal(); cout << ans; return 0; }
Problem Link
\(\quad\)用 floyd
淦就可以了
const int N=110; int T,n,a[N][N],b[N][N]; inline void solve(){ n=read(); FOR(i,1,n) FOR(j,1,n) a[i][j]=b[i][j]=read(); FOR(k,1,n) FOR(i,1,n) FOR(j,1,n){ b[i][j]|=b[i][k]&b[k][j]; } FOR(i,1,n){ FOR(j,1,n) printf("%d ",b[i][j]); puts(""); } }
Problem Link
\(\quad\)差分约束系统板题
#include<bits/stdc++.h> using namespace std; const int maxn=100010; int n,m; int cnt,head[maxn],tot[maxn]; struct edge { int v,nxt,w; }e[maxn]; int dist[maxn],vis[maxn]; void add(int u,int v,int w) { cnt++; e[cnt].w=w; e[cnt].nxt=head[u]; e[cnt].v=v; head[u]=cnt; } bool spfa(int s) { queue<int>p; memset(dist,0X3F,sizeof(dist)); dist[0]=0; vis[0]=1; p.push(0); while(p.size()) { int u=p.front(); vis[u]=0; p.pop(); for(int i=head[u];i;i=e[i].nxt) { int v=e[i].v; if(dist[v]>dist[u]+e[i].w) { dist[v]=dist[u]+e[i].w; if(!vis[v]) { tot[v]++; vis[v]=1; if(tot[v]==n+1) return 0; p.push(v); } } } } return 1; } int main() { cin>>n>>m; for(int i=1;i<=n;i++) add(0,i,0); for(int i=1;i<=m;i++) { int x,y,z; cin>>x>>y>>z; add(y,x,z); } if(!spfa(0)) cout<<"NO"; else { for(int i=1;i<=n;i++) cout<<dist[i]<<' '; } return 0; }
Problem Link
\(\quad\)最短路板题
#include<iostream> #include<cstring> #include<queue> #define maxn 100001 #define maxm maxn*2+10 #define inf 2147483647 using namespace std; priority_queue<pair<int,int> > q; unsigned long long dist[maxn+1]; bool vist[maxn+1]; int n,m,s; int u,v,w; int nbs[maxn+1],nxt[maxm+1],ev[maxm+1],ew[maxm+1]; void dijkstra(int src) { memset(dist,0X3F,sizeof(dist)); //for(int i=1; i<=n; i++) dist[i]=inf; memset(vist,0,sizeof(vist)); dist[src]=0; q.push(make_pair(0,src)); while(1) { int u=q.top().second; q.pop(); if(vist[u]) return ; if(u==0) return ; vist[u]=1; for(int j=nbs[u];j!=0; j=nxt[j]) { //cout<<"aa"; int v=ev[j]; if(vist[v]==0 && dist[u]+ew[j]<dist[v]) { dist[v]=dist[u]+ew[j]; q.push(make_pair(-dist[v],v)); } } } } int main() { int te; cin>>n>>m>>s; memset(nbs,0,sizeof(nbs)); for(int i=1; i<=m; i++) { cin>>u>>v>>w; int p=i; nxt[p] = nbs[u]; nbs[u] = p; ev[p] = v; ew[p] = w; } dijkstra(s); for(int i=1;i<=n;i++) cout<<dist[i]<<' '; return 0; }
Problem Link
\(\quad\)分层图板题
#include<bits/stdc++.h> using namespace std; struct edge { int v,w,nxt; }e[3001001]; int cnt,head[3001001]; void add(int u,int v,int w) { cnt++; e[cnt].v=v; e[cnt].w=w; e[cnt].nxt=head[u]; head[u]=cnt; } int dis[3001001]; bool vis[3001001]; struct node { int id,dis; bool operator < (const node &tt) const { return dis>tt.dis; } }; priority_queue<node> q; void dij(int s) { memset(dis,0x3f,sizeof(dis)); memset(vis,0,sizeof(vis)); dis[s]=0; q.push(node{s,0}); while(q.size()) { node uu=q.top(); int u=uu.id; q.pop(); if(vis[u]) continue ; vis[u]=1; for(int i=head[u];i;i=e[i].nxt) { int v=e[i].v; if(dis[v]>dis[u]+e[i].w) { dis[v]=dis[u]+e[i].w; q.push(node{v,dis[v]}); } } } } int n,m,k,s,t; int main() { scanf("%d%d%d%d%d",&n,&m,&k,&s,&t); for(int i=0;i<m;i++) { int u,v,w; scanf("%d%d%d",&u,&v,&w); add(u,v,w); add(v,u,w); for(int j=1;j<=k;j++) { add(u+(j-1)*n,v+j*n,0); add(v+(j-1)*n,u+j*n,0); add(u+j*n,v+j*n,w); add(v+j*n,u+j*n,w); } } for(int i=1;i<=k;i++) { add(t+(i-1)*n,t+i*n,0); } dij(s); printf("%d",dis[t+k*n]); return 0; }
Problem Link
\(\quad\)停靠的车一定比不停靠的车的级别要高,那么就让等级高的点向等级低的点连一条长度为 1 的有向边。那么答案就是这个图的最长连的长度+1
\(\quad\)那么先按拓扑排序分层,再 dp 转移。
\(\quad\)因为连的边太多了,可以设一些虚拟节点。
#include<bits/stdc++.h> using namespace std; int n,m,s,uans[100010],st[100010],to[2010][1010],ans,a[100010]; void dfs(int u) { if(uans[u]) return ; for(int i=1;i<=to[u][0];i++) { if(!uans[to[u][i]]) dfs(to[u][i]); uans[u]=max(uans[u],uans[to[u][i]]+1); } if(u>n) uans[u]--; ans=max(ans,uans[u]); } int main() { cin>>n>>m; for(int i=1;i<=m;i++) { cin>>s; for(int j=1;j<=s;j++) cin>>a[j],st[a[j]]=i,to[n+i][++to[n+i][0]]=a[j]; for(int u=a[1]+1;u<a[s];u++) if(st[u]!=i) to[u][++to[u][0]]=n+i; } for(int i=1;i<=n;i++) if(!uans[i]) dfs(i); cout<<(++ans)<<endl; return 0; }
Problem Link
\(\quad\)拓扑排序
#include<bits/stdc++.h> #define int long long using namespace std; const int maxn = 5001, mod = 80112002; int n, m, ind[maxn], oud[maxn], res, ans[maxn]; queue<int> q; vector<int> e[maxn]; signed main() { cin >> n >> m; for (int i = 1; i <= m; i++) { int a, b; cin >> a >> b; e[a].push_back(b); ind[b]++; oud[a]++; } for (int i = 1; i <= n; i++) { if (!ind[i]) { ans[i] = 1; q.push(i); } } while (q.size()) { int u = q.front(); q.pop(); for (int i = 0; i < e[u].size(); i++) { int v = e[u][i]; ind[v]--; if (!ind[v]) q.push(v); ans[v] = (ans[v] + ans[u]) % mod; } } for (int i = 1; i <= n; i++) { if (!oud[i]) { res += ans[i]; res %= mod; } } cout << res << endl; return 0; }
Problem Link
\(\quad\)这是一个拓扑排序的裸题,不过多赘述。
#include <bits/stdc++.h> using namespace std; inline int read() { int x = 0, f = 1; char ch = getchar(); while (!isdigit(ch)) { if (ch == '-') f = -1; ch = getchar(); } while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar(); return x * f; } const int N = 500005; int ind[N], f[N], a[N]; vector<int> edge[N]; queue<int> q; int main() { int n = read(); for (int i = 1; i <= n; i++) { int x = read(); a[i] = read(); while (int y = read()) { if (!y) break; edge[y].push_back(x); ind[x]++; } } for (int i = 1; i <= n; i++) { if (ind[i] == 0) { q.push(i); f[i] = a[i]; } }; while (!q.empty()) { int rhs = q.front(); q.pop(); for (int i = 0; i < edge[rhs].size(); i++) { int u = edge[rhs][i]; ind[u]--; if (ind[u] == 0) q.push(u); f[u] = max(f[u], f[rhs] + a[u]); } } int ans = 0; for (int i = 1; i <= n; i++) { ans = max(ans, f[i]); } printf("%d\n", ans); return 0; }
Problem Link
\(\quad\)这个题目有两个做法:
$\quad\(1. 反向建边 + dfs(也就是考虑每一个较大的编号能到达哪些编号) \)\quad$2. 缩点 + dp
#include<bits/stdc++.h> using namespace std; #define MAXL 100010 int N, M, A[MAXL]; vector<int> G[MAXL]; void dfs(int x, int d) { if(A[x]) return; A[x] = d; for(int i=0; i<G[x].size(); i++) dfs(G[x][i], d); } int main() { int u, v; scanf("%d%d", &N, &M); for(int i=1; i<=M; i++) { scanf("%d%d", &u, &v); G[v].push_back(u); } for(int i=N; i; i--) dfs(i, i); for(int i=1; i<=N; i++) printf("%d ", A[i]); printf("\n"); return 0; }
Problem Link
\(\quad\)最基本的搜索,因为要排序,拿 vector
存会比较好。
#include<bits/stdc++.h> using namespace std; struct edge { int u, v; }; vector<int> e[100001]; vector<edge> s; bool vis1[100001] = {0}, vis2[100001] = {0}; bool cmp(edge x, edge y) { if (x.v == y.v) return x.u < y.u; else return x.v < y.v; } void dfs(int x) { vis1[x] = 1; cout << x << " "; for (int i = 0; i < e[x].size(); i++) { int point = s[e[x][i]].v; if (!vis1[point]) { dfs(point); } } } void bfs(int x) { queue<int> q; q.push(x); cout << x << " "; vis2[x] = 1; while (!q.empty()) { int fro = q.front(); for (int i = 0; i < e[fro].size(); i++) { int point = s[e[fro][i]].v; if (!vis2[point]) { q.push(point); cout << point << " "; vis2[point] = 1; } } q.pop(); } } int main() { int n, m; cin >> n >> m; for (int i = 0; i < m; i++) { int uu, vv; cin >> uu >> vv; s.push_back((edge) {uu, vv}); } sort(s.begin(), s.end(), cmp); for (int i = 0; i < m; i++) e[s[i].u].push_back(i); dfs(1); cout << endl; bfs(1); }