快速排序算法
基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一轮扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分,直到各区间只有一个数。
void quick_sort(int q[], int l, int r) { if (l >= r) return; int i = l - 1, j = r + 1, x = q[l + r >> 1]; while (i < j) { do i ++ ; while (q[i] < x); do j -- ; while (q[j] > x); if (i < j) swap(q[i], q[j]); } quick_sort(q, l, j), quick_sort(q, j + 1, r); }
归并排序算法
基本思想:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
void merge_sort(int q[], int l, int r) { if (l >= r) return; int mid = l + r >> 1; merge_sort(q, l, mid); merge_sort(q, mid + 1, r); int k = 0, i = l, j = mid + 1; while (i <= mid && j <= r) if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ]; else tmp[k ++ ] = q[j ++ ]; while (i <= mid) tmp[k ++ ] = q[i ++ ]; while (j <= r) tmp[k ++ ] = q[j ++ ]; for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j]; }
排序方法 |
时间复杂度(平均) |
时间复杂度(最坏) | 时间复杂度(最好) | 空间复杂度 | 稳定性 | 复杂性 |
直接插入排序 | O(n2) | O(n2) | O(n) | O(1) | 稳定 | 简单 |
希尔排序 | O(nlog2n) | O(n2) | O(n1.3) | O(1) | 不稳定 | 较复杂 |
直接选择排序 | O(n2) | O(n2) | O(n2) | O(1) | 不稳定 | 简单 |
堆排序 | O(nlog2n) | O(nlog2n) | O(nlog2n) | O(1) | 不稳定 | 较复杂 |
冒泡排序 | O(n2) | O(n2) | O(n) | O(1) |
稳定 |
简单 |
快速排序 | O(nlog2n) | O(n2) | O(nlog2n) | O(nlog2n) | 不稳定 | 较复杂 |
归并排序 | O(nlog2n) | O(nlog2n) | O(nlog2n) | O(n) |
稳定 |
较复杂 |
基数排序 | O(d(n+r)) | O(d(n+r)) | O(d(n+r)) | O(n+r) |
稳定 |
较复杂 |
整数二分
注意边界问题
bool check(int x) {/* ... */} // 检查x是否满足某种性质 // 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用: int bsearch_1(int l, int r) { while (l < r) { int mid = l + r >> 1; if (check(mid)) r = mid; // check()判断mid是否满足性质 else l = mid + 1; } return l; } // 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用: int bsearch_2(int l, int r) { while (l < r) { int mid = l + r + 1 >> 1; if (check(mid)) l = mid; else r = mid - 1; } return l; }
浮点数二分
bool check(double x) {/* ... */} // 检查x是否满足某种性质 double bsearch_3(double l, double r) { const double eps = 1e-6; // eps 表示精度,取决于题目对精度的要求 while (r - l > eps) { double mid = (l + r) / 2; if (check(mid)) r = mid; else l = mid; } return l; }
高精度
用字符串读入
高对低时可只把高精度的用字符串读入
// C = A + B, A >= 0, B >= 0 vector<int> add(vector<int> &A, vector<int> &B) { if (A.size() < B.size()) return add(B, A); vector<int> C; int t = 0; for (int i = 0; i < A.size(); i ++ ) { t += A[i]; if (i < B.size()) t += B[i]; C.push_back(t % 10); t /= 10; } if (t) C.push_back(t); return C; } // C = A - B, 满足A >= B, A >= 0, B >= 0 vector<int> sub(vector<int> &A, vector<int> &B) { vector<int> C; for (int i = 0, t = 0; i < A.size(); i ++ ) { t = A[i] - t; if (i < B.size()) t -= B[i]; C.push_back((t + 10) % 10); if (t < 0) t = 1; else t = 0; } while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; } // C = A * b, A >= 0, b >= 0 vector<int> mul(vector<int> &A, int b) { vector<int> C; int t = 0; for (int i = 0; i < A.size() || t; i ++ ) { if (i < A.size()) t += A[i] * b; C.push_back(t % 10); t /= 10; } while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; } // A / b = C ... r, A >= 0, b > 0 vector<int> div(vector<int> &A, int b, int &r) { vector<int> C; r = 0; for (int i = A.size() - 1; i >= 0; i -- ) { r = r * 10 + A[i]; C.push_back(r / b); r %= b; } reverse(C.begin(), C.end()); while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; }
一维前缀和
作用能快速地求出原数组里一段数的和。可以只用一次运算就求出来任意区间的一段和。
S[i] = a[1] + a[2] + ... a[i] a[l] + ... + a[r] = S[r] - S[l - 1]
二维前缀和
S[i, j] = 第i行j列格子左上部分所有元素的和 以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和为: S[x2, y2] - S[x1 - 1, y2] - S[x2, y1 - 1] + S[x1 - 1, y1 - 1]
一维差分
反着的前缀和
若a[n]是b[n]的前缀和,则b[n]是a[n]的差分。
给区间[l, r]中的每个数加上c:B[l] += c, B[r + 1] -= c
二维差分
给以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵中的所有元素加上c: S[x1, y1] += c, S[x2 + 1, y1] -= c, S[x1, y2 + 1] -= c, S[x2 + 1, y2 + 1] += c
位运算
& 与 //&1等同于%2 | 或 ~ 非 ^ 异或 //不同为1,相同为0。也就可以叫不进位加法
>> 右移 << 左移 a>>k==a/2^k 常用操作:
(1) 求x的第k位数字 x >> k & 1 //
(2) lowbit(x) == x & -x,返回x的最后一位1以及后的0 -x==~x+1二进制表示负数补码等于其原码的反码+1(取反+1)
双指针算法
常见问题分类: (1) 对于一个序列,用两个指针维护一段区间 (2) 对于两个序列,维护某种次序,比如归并排序中合并两个有序序列的操作
for (int i = 0, j = 0; i < n; i ++ ) { while (j < i && check(i, j)) j ++ ; // 具体问题的逻辑 }
离散化
vector<int> alls; // 存储所有待离散化的值 sort(alls.begin(), alls.end()); // 将所有值排序 alls.erase(unique(alls.begin(), alls.end()), alls.end()); // 去掉重复元素 // 二分求出x对应的离散化的值 int find(int x) // 找到第一个大于等于x的位置 { int l = 0, r = alls.size() - 1; while (l < r) { int mid = l + r >> 1; if (alls[mid] >= x) r = mid; else l = mid + 1; } return r + 1; // 映射到1, 2, ...n }
区间合并
// 将所有存在交集的区间合并 void merge(vector<PII> &segs) { vector<PII> res; sort(segs.begin(), segs.end()); int st = -2e9, ed = -2e9; for (auto seg : segs) if (ed < seg.first) { if (st != -2e9) res.push_back({st, ed}); st = seg.first, ed = seg.second; } else ed = max(ed, seg.second); if (st != -2e9) res.push_back({st, ed}); segs = res; }