A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.
Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent nodes' numbers.
For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components in the graph.
5
1 2
1 3
1 4
2 5
3
4
5
5
1 3
1 4
2 5
3 4
Error: 2 components
英文 | 解释 |
---|---|
acyclic | 非循环的 |
给出n个结点(1~n)之间的n条边,问是否能构成一棵树,如果不能构成则输出它有的连通分量个数,如果能构成一棵树,输出能构成最深的树的高度时,树的根结点。如果有多个,按照从小到大输出。
首先深度优先搜索判断它有几个连通分量。如果有多个,那就输出Error: x components,如果只有一个,就两次深度优先搜索,先从一个结点dfs后保留最高高度拥有的结点们,然后从这些结点中的其中任意一个开始dfs得到最高高度的结点们,这两个结点集合的并集就是所求
原文链接:https://blog.csdn.net/liuchuo/article/details/52294178
咱就是说,这段证明谁能看懂呢。。。(除了各位大佬
1.用set确实更方便:自动去重+自动排序!
2.并查集模板容易忘写init函数。
#include <bits/stdc++.h> using namespace std; const int N=100010; vector<int> G[N]; bool isRoot[N]; int father[N]; int findFather(int x) { int a=x; while(x!=father[x]){ x=father[x]; } while(a!=father[a]){ int z=a; a=father[a]; father[z]=x; } return x; } void Union(int a,int b) { int faA=findFather(a); int faB=findFather(b); if(faA!=faB){ father[faA]=faB; } } void init(int n) { for(int i=1;i<=n;i++){ father[i]=i; } } int calBlock(int n) { int Block=0; for(int i=1;i<=n;i++){ isRoot[findFather(i)]=true; } for(int i=1;i<=n;i++) Block+=isRoot[i]; return Block; } int maxH=0; set<int> temp,Ans; void DFS(int u,int Height,int pre) { if(Height>maxH){ temp.clear(); temp.insert(u); maxH=Height; }else if(Height==maxH){ temp.insert(u); } for(int i=0;i<G[u].size();i++){ if(G[u][i]==pre) continue; DFS(G[u][i],Height+1,u); } } int main() { int a,b,n; cin>>n; init(n); for(int i=1;i<n;i++){ cin>>a>>b; G[a].push_back(b); G[b].push_back(a); Union(a,b); } int Block=calBlock(n); if(Block!=1) cout<<"Error: "<<Block<<" components"<<endl; else{ DFS(1,1,-1); Ans=temp; auto it=Ans.begin(); DFS(*it,1,-1); for(auto it=temp.begin();it!=temp.end();it++){ Ans.insert(*it); } for(auto it=Ans.begin();it!=Ans.end();it++) cout<<*it<<endl; } return 0; }