Java教程

I/O密集型任务下,单线程、多进程、多线程、协程

本文主要是介绍I/O密集型任务下,单线程、多进程、多线程、协程,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

单线程

import time

def html(url):
    time.sleep(0.1)
    print(url)

if __name__=='__main__':
    start_time = time.time()

    for i in range(1,1001):
        i = 'http://www.cnblogs.com/uncleyong/%s'%i
        html(i)

    print('---------------')
    print('ok')
    stop_time = time.time()
    print(stop_time - start_time)

---------------
ok
100.0597231388092

 

多进程

import multiprocessing
import time

def html(url):
    time.sleep(0.1)
    print(url)


if __name__=='__main__':
    start_time = time.time()
    p_list = []
    for i in range(1,1001):
        i = 'http://www.cnblogs.com/uncleyong/%s'%i
        p = multiprocessing.Process(target=html, args=(i,))
        p_list.append(p)
        p.start()

    for p in p_list:
        p.join()

    print('---------------')
    print('ok')
    stop_time = time.time()
    print(stop_time - start_time)

---------------

ok
80.07257986068726

 

 

多线程

import threading
import time

def html(url):
    time.sleep(0.1)
    print(url)


if __name__=='__main__':
    start_time = time.time()
    t_list = []
    for i in range(1,1001):
        i = 'http://www.cnblogs.com/uncleyong/%s'%i
        t = threading.Thread(target=html, args=(i,))
        t_list.append(t)
        t.start()

    for t in t_list:
        t.join()

    print('---------------')
    print('ok')
    stop_time = time.time()
    print(stop_time - start_time)

---------------
ok
0.23501324653625488

 

 

协程

from gevent import monkey;monkey.patch_all()
import gevent
import time

def html(url):
    time.sleep(0.1)
    print(url)

if __name__=='__main__':
    start_time = time.time()
    g_list = []
    for i in range(1,1001):
        i = 'http://www.cnblogs.com/uncleyong/%s'%i
        g = gevent.spawn(html, i)
        g_list.append(g)

    for g in g_list:
        g.join()

    print('---------------')
    print('ok')
    stop_time = time.time()
    print(stop_time - start_time)

---------------
ok
0.14500832557678223

 

运行速度:协程 > 多线程 > 多进程 > 单线程

 

bak:https://www.cnblogs.com/uncleyong/p/8503151.html

原文:https://www.cnblogs.com/uncleyong/p/15871733.html

这篇关于I/O密集型任务下,单线程、多进程、多线程、协程的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!