Java教程

每日一题——2022/2/8

本文主要是介绍每日一题——2022/2/8,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

半 AFO 的 whker 了

所以每天来一道几何活动脑子

如图,\(AM=MB,CM=MD,PC\bot AC,PD\bot BD,PQ\bot AB\),求证:\(\angle PQC=\angle PQD\)

思考:不难发现有两组四点共圆:\(D,P,Q,B\) 和 \(C,P,Q,A\),可以考虑将圆做出来,圆心分别是 \(AP,BP\) 的中点,然后 \(M\) 又是中点,这促使我们构造中位线。

我们发现 \(O_1M=O_2P,O_1P=O_2M\),这驱使我们把半径做出来:

然后就可以得到一组全等三角形:\(\triangle CO_1M \cong \triangle MO_2D \ (S.S.S.)\),这时得到 \(\angle CO_1M=\angle MO_2D\),因为四边形 \(PO_1QO_2\) 是平行四边形(两组对边分别平行),所以 \(\angle CO_1P = \angle DO_2P\),所以 \(\angle CAO_1 = \angle DBO_2\),所以 \(\angle CQP=\angle DQP\)(同弧所对圆周角相等)。

总的来说,这题还是不错的,至少对于我这样一位中考生来说(然而这好像是 MO 题?),对我的几何能力有很大挑战,不过还是想嘲讽一下就这

这篇关于每日一题——2022/2/8的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!