C/C++教程

专题二树形结构 E - Can you answer these queries V

本文主要是介绍专题二树形结构 E - Can you answer these queries V,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
  1. 题目

    You are given a sequence A[1], A[2], ..., A[N] . ( |A[i]| <= 10000 , 1 <= N <= 10000 ). A query is defined as follows: Query(x1,y1,x2,y2) = Max { A[i]+A[i+1]+...+A[j] ; x1 <= i <= y1 , x2 <= j <= y2 and x1 <= x2 , y1 <= y2 }. Given M queries (1 <= M <= 10000), your program must output the results of these queries.

    Input

    The first line of the input consist of the number of tests cases <= 5. Each case consist of the integer N and the sequence A. Then the integer M. M lines follow, contains 4 numbers x1, y1, x2 y2.

    Output

    Your program should output the results of the M queries for each test case, one query per line.

    Example

    Input:
    2
    6 3 -2 1 -4 5 2
    2
    1 1 2 3
    1 3 2 5
    1 1
    1
    1 1 1 1
    
    Output:
    2
    3
    1
    
    
    
  2. 思路
    这题没有修改,和A相比的区别主要是前后端点不定
    A题:https://www.cnblogs.com/Benincasa/p/15866592.html
    两个区间不相交时,最大连续和是x1,y1的最大后缀和,加上y1,x2的总和,再加上x2,y2的最大前缀和
    两个区间相交时有四种情况,一种情况下和不相交的时候方法一样,另外三种分别是x2,y1的最大连续和,x1,y1的最大连续和,x2,y2的最大连续和
  3. 代码
    lmin是之前写别的思路的时候加的,没啥用
    #include<cstdio>
    #include<iostream>
    #include<string>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    
    #define clear(a,x) memset(a,x,sizeof(a))
    #define ll long long
    const int M=4e5;
    
    struct Node {
        int lsum, lmin, rsum, sum, maxx;
    }ss[M];
    
    int a[M << 2];
    int n,q,ca,ans;
    
    void up(int p)
    {
    	ss[p].sum = ss[p << 1].sum + ss[(p << 1) + 1].sum;
    	ss[p].lsum = max(ss[p << 1].lsum, ss[p << 1].sum + ss[p << 1 | 1].lsum);
    	ss[p].lmin = min(ss[p << 1].lmin, ss[p << 1].sum + ss[p << 1 | 1].lmin);
    	ss[p].rsum = max(ss[p << 1 | 1].rsum, ss[p << 1 | 1].sum + ss[p << 1].rsum);
    	ss[p].maxx = max(max(ss[p << 1].maxx, ss[p << 1 | 1].maxx), ss[p << 1].rsum + ss[p << 1 | 1].lsum);
    }
    
    void build(int s, int t, int p) {
    
    	if (s == t) {
    	    ss[p].lsum = ss[p].lmin = ss[p].rsum = ss[p].maxx = ss[p].sum = a[s];
    	    return;
    	}
    
    	int m = s + ((t - s) >> 1);
    	build(s, m, p << 1), build(m + 1, t, p << 1 | 1);
    	up(p);
    }
    
    //void change(int x, int c, int s, int t, int p)
    //{
    //	int m = s + ((t - s) >> 1);
    //	if (s == x && s == t) {
    //		ss[p].maxx = ss[p].lsum = ss[p].rsum = ss[p].sum = c;
    //		return;
    //	}
    //	if (x <= m) change(x, c, s, m, p << 1); else change(x, c, m+1, t, p << 1 | 1);
    //	up(p);
    //}
    
    Node query(int l, int r, int s, int t, int p){
        if (l <= s && t <= r) return ss[p];
        int m = s + ((t - s) >> 1);
        if (m >= r) return query(l, r, s, m, p << 1) ;
        else if (m < l) return query(l, r, m + 1, t, p << 1 | 1);
        else {
            Node ls = query(l, r, s, m, p << 1);
            Node rs = query(l, r, m + 1, t, p << 1 | 1);
            Node ans ;
            ans.maxx = max(max(ls.maxx, rs.maxx), ls.rsum + rs.lsum);
            ans.lsum = max(ls.lsum, ls.sum + rs.lsum);
    		ans.lmin = min(ls.lmin, ls.sum + rs.lmin);
            ans.rsum = max(rs.rsum, rs.sum + ls.rsum);
            ans.sum = ls.sum + rs.sum;
            return ans;
        }
    }
    
    int main()
    {
    	scanf("%d",&ca);
    	while(ca--)
    	{
    		scanf("%d",&n);
    		for(int i=1;i<=n;i++){
    			scanf("%d",&a[i]);
    		}
    		build(1,n,1);
    		scanf("%d",&q);
    		int x1,y1,x2,y2;
    		while (q--) {
    			ans = 0;
    			cin >> x1 >> y1 >> x2 >> y2;
    			if(y1 < x2)
    			{
    				ans = query(x1,y1,1,n,1).rsum + query(x2,y2,1,n,1).lsum + query(y1,x2,1,n,1).sum;
    				ans = ans - a[y1] - a[x2];
    			}
    			else
    			{
    				int a1 = query(x2,y1,1,n,1).maxx;
    				int a2 = query(x1,x2,1,n,1).rsum + query(y1,y2,1,n,1).lsum + query(x2,y1,1,n,1).sum;
    				    a2 = a2 - a[y1] - a[x2];
    				int a3 = query(x1,x2,1,n,1).rsum + query(x2,y1,1,n,1).lsum - a[x2];
    				int a4 = query(x2,y1,1,n,1).rsum + query(y1,y2,1,n,1).lsum - a[y1];
    				ans = max(max(max(a1, a2), a3), a4);
    			}
    			cout << ans << endl;
    		}
    	}
    	return 0;
    }
这篇关于专题二树形结构 E - Can you answer these queries V的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!