1. 算法背景——蚁群的自组织行为特征 高度结构化的组织——虽然蚂蚁的个体行为极其简单,但由个体组成的蚁群却构成高度结构化的社会组织,蚂蚁社会的成员有分工,有相互的通信和信息传递。 自然优化——蚁群在觅食过程中,在没有任何提示下总能找到从蚁巢到食物源之间的最短路径;当经过的路线上出现障碍物时,还能迅速找到新的最优路径。 信息正反馈——蚂蚁在寻找食物时,在其经过的路径上释放信息素(外激素)。蚂蚁基本没有视觉,但能在小范围内察觉同类散发的信息素的轨迹,由此来决定何去何从,并倾向于朝着信息素强度高的方向移动。 自催化行为——某条路径上走过的蚂蚁越多,留下的信息素也越多(随时间蒸发一部分),后来蚂蚁选择该路径的概率也越高。 2. 算法基本思想: (1)根据具体问题设置多只蚂蚁,分头并行搜索。 (2)每只蚂蚁完成一次周游后,在行进的路上释放信息素,信息素量与解的质量成正比。 (3)蚂蚁路径的选择根据信息素强度大小(初始信息素量设为相等),同时考虑两点之间的距离,采用随机的局部搜索策略。这使得距离较短的边,其上的信息素量较大,后来的蚂蚁选择该边的概率也较大。 (4)每只蚂蚁只能走合法路线(经过每个城市1次且仅1次),为此设置禁忌表来控制。 (5)所有蚂蚁都搜索完一次就是迭代一次,每迭代一次就对所有的边做一次信息素更新,原来的蚂蚁死掉,新的蚂蚁进行新一轮搜索。 (6)更新信息素包括原有信息素的蒸发和经过的路径上信息素的增加。 (7)达到预定的迭代步数,或出现停滞现象(所有蚂蚁都选择同样的路径,解不再变化),则算法结束,以当前最优解作为问题的最优解。 3. 信息素及转移概率的计算: 4. 算法步骤 算法流程图如下: 5. 举例分析 我们假设5个城市的TSP问题,然由于某种原因,城市道路均是单行道,即A->B和B->A的距离不相同,也就是说这是一个不对称的TSP问题。现在城市距离信息如下表: 设置参数: m=5,α=1,β=1,ρ=0.5,τ_ij(0)=2。 第一次迭代第一只蚂蚁: 第一次迭代第二只蚂蚁 第一次迭代第三只蚂蚁: 第一次迭代第四只蚂蚁: 第一次迭代第五只蚂蚁: 第一次迭代完成,更新信息素矩阵,信息素挥发系数为0.5。 第一代蚂蚁全部累死,重新随机生成第二代蚂蚁进行迭代。 第二次迭代第一只蚂蚁: 第二次迭代第二只蚂蚁: 第二次迭代第三只蚂蚁: 第二次迭代第四只蚂蚁: 第二次迭代第五只蚂蚁: 至此,我们已经发现在第二次迭代的时候,五只蚂蚁走的是同一条路,所以算法收敛结束。 最优路径A->E->D->C->B->A, 最有路径的距离为9. 6. 算法特点: 是一种基于多主体的智能算法,不是单个蚂蚁行动,而是多个蚂蚁同时搜索,具有分布式的协同优化机制。 本质上属于随机搜索算法(概率算法),具有概率搜索的特征。 是一种全局搜索算法,能够有效地避免局部最优。 |
程序代码
程序中使用到的文件"Chap9_citys_data.xlsx"链接如下:
链接:https://pan.baidu.com/s/1MStyADIrhFtDHoVJUuTjzg
提取码:t24f
————————————————
版权声明:本文为CSDN博主「RavenXRZ」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_35109096/article/details/81126925
%-------------------------------------------------------------------------- %% 数据准备 % 清空环境变量 clear all clc % 程序运行计时开始 t0 = clock; %导入数据 citys=xlsread('Chap9_citys_data.xlsx', 'B2:C53'); %-------------------------------------------------------------------------- %% 计算城市间相互距离 n = size(citys,1); D = zeros(n,n); for i = 1:n for j = 1:n if i ~= j D(i,j) = sqrt(sum((citys(i,:) - citys(j,:)).^2)); else D(i,j) = 1e-4; %设定的对角矩阵修正值 end end end %-------------------------------------------------------------------------- %% 初始化参数 m = 75; % 蚂蚁数量 alpha = 1; % 信息素重要程度因子 beta = 5; % 启发函数重要程度因子 vol = 0.2; % 信息素挥发(volatilization)因子 Q = 10; % 常系数 Heu_F = 1./D; % 启发函数(heuristic function) Tau = ones(n,n); % 信息素矩阵 Table = zeros(m,n); % 路径记录表 iter = 1; % 迭代次数初值 iter_max = 100; % 最大迭代次数 Route_best = zeros(iter_max,n); % 各代最佳路径 Length_best = zeros(iter_max,1); % 各代最佳路径的长度 Length_ave = zeros(iter_max,1); % 各代路径的平均长度 Limit_iter = 0; % 程序收敛时迭代次数 %------------------------------------------------------------------------- %% 迭代寻找最佳路径 while iter <= iter_max % 随机产生各个蚂蚁的起点城市 start = zeros(m,1); for i = 1:m temp = randperm(n); start(i) = temp(1); end Table(:,1) = start; % 构建解空间 citys_index = 1:n; % 逐个蚂蚁路径选择 for i = 1:m % 逐个城市路径选择 for j = 2:n has_visited = Table(i,1:(j - 1)); % 已访问的城市集合(禁忌表) allow_index = ~ismember(citys_index,has_visited); % 参加说明1(程序底部) allow = citys_index(allow_index); % 待访问的城市集合 P = allow; % 计算城市间转移概率 for k = 1:length(allow) P(k) = Tau(has_visited(end),allow(k))^alpha * Heu_F(has_visited(end),allow(k))^beta; end P = P/sum(P); % 轮盘赌法选择下一个访问城市 Pc = cumsum(P); %参加说明2(程序底部) target_index = find(Pc >= rand); target = allow(target_index(1)); Table(i,j) = target; end end % 计算各个蚂蚁的路径距离 Length = zeros(m,1); for i = 1:m Route = Table(i,:); for j = 1:(n - 1) Length(i) = Length(i) + D(Route(j),Route(j + 1)); end Length(i) = Length(i) + D(Route(n),Route(1)); end % 计算最短路径距离及平均距离 if iter == 1 [min_Length,min_index] = min(Length); Length_best(iter) = min_Length; Length_ave(iter) = mean(Length); Route_best(iter,:) = Table(min_index,:); Limit_iter = 1; else [min_Length,min_index] = min(Length); Length_best(iter) = min(Length_best(iter - 1),min_Length); Length_ave(iter) = mean(Length); if Length_best(iter) == min_Length Route_best(iter,:) = Table(min_index,:); Limit_iter = iter; else Route_best(iter,:) = Route_best((iter-1),:); end end % 更新信息素 Delta_Tau = zeros(n,n); % 逐个蚂蚁计算 for i = 1:m % 逐个城市计算 for j = 1:(n - 1) Delta_Tau(Table(i,j),Table(i,j+1)) = Delta_Tau(Table(i,j),Table(i,j+1)) + Q/Length(i); end Delta_Tau(Table(i,n),Table(i,1)) = Delta_Tau(Table(i,n),Table(i,1)) + Q/Length(i); end Tau = (1-vol) * Tau + Delta_Tau; % 迭代次数加1,清空路径记录表 iter = iter + 1; Table = zeros(m,n); end %-------------------------------------------------------------------------- %% 结果显示 [Shortest_Length,index] = min(Length_best); Shortest_Route = Route_best(index,:); Time_Cost=etime(clock,t0); disp(['最短距离:' num2str(Shortest_Length)]); disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]); disp(['收敛迭代次数:' num2str(Limit_iter)]); disp(['程序执行时间:' num2str(Time_Cost) '秒']); %-------------------------------------------------------------------------- %% 绘图 figure(1) plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],... %三点省略符为Matlab续行符 [citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-'); grid on for i = 1:size(citys,1) text(citys(i,1),citys(i,2),[' ' num2str(i)]); end text(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),' 起点'); text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),' 终点'); xlabel('城市位置横坐标') ylabel('城市位置纵坐标') title(['ACA最优化路径(最短距离:' num2str(Shortest_Length) ')']) figure(2) plot(1:iter_max,Length_best,'b') legend('最短距离') xlabel('迭代次数') ylabel('距离') title('算法收敛轨迹') %-------------------------------------------------------------------------- %% 程序解释或说明 % 1. ismember函数判断一个变量中的元素是否在另一个变量中出现,返回0-1矩阵; % 2. cumsum函数用于求变量中累加元素的和,如A=[1, 2, 3, 4, 5], 那么cumsum(A)=[1, 3, 6, 10, 15]。