算法包下载链接:https://download.csdn.net/download/qq_42629529/79481514
from .Matrix import Matrix from .Vector import Vector from ._globals import is_zero#判断是否为0 #方阵的lu分解 def lu(matrix): assert matrix.row_num() == matrix.col_num(), "matrix must be a square matrix" n = matrix.row_num()#行数 A = [matrix.row_vector(i) for i in range(n)]#矩阵的行向量,上三角矩阵 L = [[1.0 if i == j else 0.0 for i in range(n)] for j in range(n)] #高斯消元的过程 for i in range(n): # 看A[i][i]位置是否可以是主元 if is_zero(A[i][i]): return None, None#不能分解两个都空 else: for j in range(i + 1, n): p = A[j][i] / A[i][i] A[j] = A[j] - p * A[i] L[j][i] = p return Matrix(L), Matrix([A[i].underlying_list() for i in range(n)])