Python教程

使用Python如何快速打开一个百万行级别的超大Excel文件?

本文主要是介绍使用Python如何快速打开一个百万行级别的超大Excel文件?,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

知乎上有同学求助说,当他试图打开一个20M左右的excel文件时,无论是使用pandas的read_excel,还是直接使用xlrd或者openpyxl模块,速度都慢到了无法忍受的程度,耗时大约1分钟左右。

真的会这样吗?第一感觉是,这位同学在使用openpyxl模块时没有设置只读模式。为便于测试,先用下面的代码生成一个一百万行数据的excel文件。

>>> from openpyxl import Workbook
>>> wb = Workbook()
>>> sh = wb.active
>>> sh.append(['id', '语文', '数学', '英语', '物理'])
>>> for i in range(1000000): # 写入100万行数据
    sh.append([i+1, 90, 100, 95, 99])


>>> wb.save(r'd:\bigxlsx.xlsx')
>>> import os
>>> os.path.getsize(r'd:\bigxlsx.xlsx') # 文件大小:20M字节
20230528

接下来定义了一个使用openpyxl模块打开文件的函数,分别考察关闭和开启只读模式的时间消耗。

>>> from openpyxl import load_workbook
>>> import time
>>> def read_xlsx(read_only):
    t0 = time.time()
    wb = load_workbook(r'd:\bigxlsx.xlsx', read_only=read_only)
    t1 = time.time()
    print(wb.sheetnames)
    print(sh.cell(row=1, column=1).value)
    print(sh.cell(row=100, column=3).value)
    print('耗时%0.3f秒钟'%(t1-t0))


>>> read_xlsx(True)
['Sheet']
id
100
耗时0.404秒钟
>>> read_xlsx(False)
['Sheet']
id
100
耗时67.817秒钟

运行测试,果然,不开启只读的话,真的需要1分多钟,而使用只读模式的话,则仅需0.4秒钟。

不过,也别高兴得太早,openpyxl模块并没有提供像pandas.read_excel()那样把全部数据读入一个数据结构的功能,只能定位到行、列或格子以后再读取数据。要想使用openpyxl模块把全部数据读入到数组或DataFrame中,需要遍历所有的行和列,这仍然是一个非常耗时的操作。

那么,pandas.read_excel()是否也支持只读模式呢?遗憾的是,read_excel()并没有类似read_only这样的参数。尽管read_excel()可以接受文件路径、文件对象、类文件对象,甚至是二进制数据,但即使将文件内容传入,read_excel()解析这100万行数据仍然需要大约80秒钟。下面的代码验证了这一点。

>>> import pandas as pd
>>> def read_excel_by_pandas():    
    with open(r'd:\bigxlsx.xlsx', 'rb') as fp:
        content = fp.read()
        t0 = time.time()
        df = pd.read_excel(content, engine='openpyxl')
        t1 = time.time()
    print(df.head()) # 显示前5行
    print(df.tail()) # 显示后5行
    print('耗时%0.3f秒钟'%(t1-t0))


>>> read_excel_by_pandas()
   id  语文   数学  英语  物理
0   1  90  100  95  99
1   2  90  100  95  99
2   3  90  100  95  99
3   4  90  100  95  99
4   5  90  100  95  99
   id      语文   数学  英语  物理
999995   999996  90  100  95  99
999996   999997  90  100  95  99
999997   999998  90  100  95  99
999998   999999  90  100  95  99
999999  1000000  90  100  95  99
耗时81.369秒钟

结论:处理超大的Excel文件时,使用openpyxl模块的只读模式,可以快速打开并取得指定格子的数据,但不要尝试将全部数据读入到自己定义的数据结构中,这将花费漫长的时间。对此,pandas也无能为力。

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。


这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

这篇关于使用Python如何快速打开一个百万行级别的超大Excel文件?的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!