MySql教程

MySQL各类数据结构

本文主要是介绍MySQL各类数据结构,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

MySQL数据结构选择的合理性

从MySQL的角度讲,不得不考虑一个现实问题就是磁盘l0。如果我们能让索引的数据结构尽量减少硬盘的I/O操作,所消耗的时间也就越小。可以说,磁盘的I/0操作次数对索引的使用效率至关重要。
查找都是索引操作,一般来说索引非常大,尤其是关系型数据库,当数据量比较大的时候,索引的大小有可能几个G甚至更多,为了减少索引在内存的占用,数据库索引是存储在外部磁盘上的。当我们利用索引查询的时候,不可能把整个索引全部加载到内存,只能一加载,那么MySQL衡量查询效率的标准就是磁盘I0次数。

1、全表遍历

不用多说

2、Hash结构

Hash 本身是一个函数,又被称为散列函数,它可以帮助我们大幅提升检索数据的效率。
Hash算法是通过某种确定性的算法(比如MD5、SHA1、SHA2、SHA3)将输入转变为输出。相同的输入永远可以得到相同的输出,假设输入内容有微小偏差,在输出中通常会有不同的结果。
举例:如果你想要验证两个文件是否相同,那么你不需要把两份文件直接拿来比对,只需要让对方把Hash函数计算得到的结果告诉你即可,然后在本地同样对文件进行Hash函数的运算,最后通过比较这两个Hash函数的结果是否相同,就可以知道这两个文件是否相同。
加速查找速度的数据结构,常见的有两类:

⑴树,例如平衡二叉搜索树,查询/插入/修改/删除的平均时间复杂度都是O(log2N) ;

⑵哈希,例如HashMap,查询/插入/修改/删除的平均时间复杂度都是O(1);

采用Hash进行检索效率非常高,基本上一次检索就可以找到数据,而B+树需要自顶向下依次查找,多次访问节点才能找到数据,中间需要多次l/o操作,从效率来说Hah 比 B+树更快
在哈希的方式下,一个元素k处于h(k)中,即利用哈希函数h,根据关键字k计算出槽的位置。函数h将关键字域映射到哈希表T[o...m-1]的槽位上。

哈希函数h有可能将两个不同的关键字映射到相同的位置,这叫做碰撞,在数据库中一般采用链接法来解决。在链接法中,将散列到同一槽位的元素放在一个链表中,Java中的hashmap也是类似操作

Hash结构效率高,那为什么索引结构要设计成树型呢?

原因1: Hash索引仅能满足(=)(<>)和IN查询。如果进行范围查询,哈希型的索引,时间复杂度会退化为o(n);而树型的“有序”特性,依然能够保持o(log2N)的高效率。
原因2: Hash 索引还有一个缺陷,数据的存储是没有顺序的,在ORDER BY的情况下,使用Hash 索引还需要对数据重新排序。
原因3:对于联合索引的情况,Hash值是将联合索引键合并后一起来计算的,无法对单独的一个键或者几个索引键进行查询。
原因4∶对于等值查询来说,通常Hash 索引的效率更高,不过也存在一种情况,就是索引列的重复值如果很多效率就会降低。这是因为遇到Hash冲突时,需要遍历桶中的行指针来进行比较,找到查询的关键字,非常耗时。所以,Hash索引通常不会用到重复值多的列上,比如列为性别、年龄的情况等。

Hash索引使用存储引擎如表所示:

索引/存储引擎 MyISAM InnoDB Memory
Hash索引 不支持 不支持 支持

Hash索引的适用性:

Hash索引存在着很多限制,相比之下在数据库中B+树索引的使用面会更广,不过也有一些场景采用Hash索引效率更高,比如在键值型(key-value)数据库中,Redis存储的核心就是Hash表。

MySQL中的Memory存储引擎支持Hash存储,如果我们需要用到查询的临时表时,就可以选择Memory存储引擎,把某个字段设置为Hash索引,比如字符串类型的字段,进行Hash计算之后长度可以缩短到几个字节。当字段的重复度低,而且经常需要进行等值查询的时候,采用Hash索引是个不错的选择。

另外,InnoDB本身不支持Hash 索引,但是提供自适应 Hash索引(Adaptive Hash Index)。什么情况下才会使用自适应Hash索引呢?如果某个数据经常被访问,当满足一定条件的时候,就会将这个数据页的地址存放到Hash表中。这样下次查询的时候,就可以直接找到这个页面的所在位置。这样让B+树也具备了Hash索引的优点。

3、二叉搜索树

如果我们利用二叉树作为索引结构,那么磁盘的IO次数和索引树的高度是相关的。

3.1二叉搜索树的特点

● 一个节点只能有两个子节点,也就是一个节点度不能超过2

● 左子节点<本节点;右子节点>=本节点,比我大的向右,比我小的向左

3.2查找规则

我们先来看下最基础的二叉搜索树(Binary Search Tree),搜索某个节点和插入节点的规则一样,我们假设搜索插入的数值为 key:

​ ①如果key大于根节点,则在右子树中进行查找;

​ ②如果key小于根节点,则在左子树中进行查找;

​ ③如果key等于根节点,也就是找到了这个节点,返回根节点即可。

但是存在特殊的情况,就是有时候二叉树的深度非常大。比如我们给出的数据顺序是(5,22,23,34,77,89,91)创造出来的二分搜索树如下图所示:

上面这棵树也属于二分查找树,但是性能上已经退化成了一条链表,查找数据的时间复杂度变成了0(n)。你能看出来这个树的深度是7,最多需要7次比较才能找到节点。

为了提高查询效率,就需要减少磁盘IO数。为了减少磁盘lo的次数,就需要尽量降低树的高度,需要把原来“瘦高”的树结构变的“矮胖”,树的每层的分叉越多越好。

4、AVL树(平衡二叉搜索树)

为了解决上面二叉查找树退化成链表的问题,人们提出了平衡二叉搜索树(Balanced Binary Tree),又称为AVL树(有别于AVL算法),它在二叉搜索树的基础上增加了约束,具有以下性质:
它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

这里说一下,常见的平衡二叉树有很多种,包括了平衡二叉搜索树、红黑树、数堆、伸展树。平衡二叉搜索树是最早提出来的自平衡二叉搜索树,当我们提到平衡二叉树时一般指的就是平衡二叉搜索树。事实上,第一棵树就属于平衡二叉搜索树,搜索时间复杂度就是o( log2n)

数据查询的时间主要依赖于磁盘V/o的次数,如果我们采用二叉树的形式,即使通过平衡二叉搜索树进行了改进,树的深度也是o(log2n),当n 比较大时,深度也是比较高的,比如下图的情况:

每访问一次节点就需要进行一次磁盘I/0 操作,对于上面的树来说,我们需要进行5次I/O操作。虽然平衡二叉树的效率高,但是树的深度也同样高,这就意味着磁盘I/O操作次数多,会影响整体数据查询的效率。
针对同样的数据,如果我们把二叉树改成M叉树(M>2)呢?当M=3时,同样的31个节点可以由下面的三叉树来进行存储:

你能看到此时树的高度降低了,当数据量N大的时候,以及树的分叉数M大的时候,M叉树的高度会远小于二叉树的高度(M>2)。所以,我们需要把树从“瘦高"变“矮胖”

5、B-Tree

B树的英文是Balance Tree,也就是多路平衡查找树。简写为B-Tree (注意横杠表示这两个单词连起来的意思,不是减号)。它的高度远小于平衡二叉树的高度。

B树的结构如下图:

B树作为多路平衡查找树,它的每一个节点最多可以包括M个子节点,M称为B树的阶。每个磁盘块中包括了关键字子节点的指针。如果一个磁盘块中包括了×个关键字,那么指针数就是x+1。对于一个10o阶的B树来说,如果有3层的话最多可以存储约100万的索引数据。对于大量的索引数据来说,采用B树的结构是非常适合的,因为树的高度要远小于二叉树的高度。

小结:

​ ① B树在插入和删除节点的时候如果导致树不平衡,就通过自动调整节点的位置来保持树的自平衡。

​ ② 关键字集合分布在整棵树中,即叶子节点和非叶子节点都存放数据。搜索有可能在非叶子节点结束。

​ ③ 其搜索性能等价于在关键字全集内做一次二分查找。

6、B+Tree

B+树也是一种多路搜索树,基于B树做出了改进,主流的DBMS都支持B+树的索引方式,比如 MysQL。相比于B-Tree,B+Tree适合文件索引系统

● MySQL官网说明:

B+树和B树的差异在于以下几点:

① 有k个孩子的节点就有k个关键字。也就是孩子数量=关键字数,而B树中,孩子数量=关键字数+1。
② 非叶子节点的关键字也会同时存在在子节点中,并且是在子节点中所有关键字的最大(或最小)。
③ 非叶子节点仅用于索引,不保存数据记录,跟记录有关的信息都放在叶子节点中。而B树中,非叶子节点既 保存索引,也保存数据记录
④ 所有关键字都在叶子节点出现,叶子节点构成一个有序链表,而且叶子节点本身按照关键字的大小从小到大
顺序链接。

思考:为了减少IO,索引树会一次性加载吗?

1、数据库索引是存储在磁盘上的,如果数据量很大,必然导致索引的大小也会很大,超过几个G。

2、当我们利用索引查询的时候,是不可能奖全部几个G的索引都加载进内存的,我们能做的只是:逐一加载每一个磁盘页,因为磁盘页对应着索引树的节点。

思考:B+树的存储能力如何?为何说一般查找行记录,最多只需1~3次的磁盘IO

InnoDB存储引擎中页的大小为16KB,一般表的主键类型为INT(占用4个字节)或BIGINT(占用8个字节),指针类型也一般为4或8个字节,也就是说一个页(B+Tree中的一个节点)中大概存储16KB/(8B+8B)=1K个键值(因为是估值,为方便计算,这里的K取值为103。也就是说一个深度为3的B+Tree索引可以维护103*103*1043=10亿条记录。(这里假定一个数据页也存储103条行记录数据了)

实际情况中每个节点可能不能填充满,因此在数据库中,B+Tree 的高度一般都在2~4层。MySQL的InnoDB存储引擎在设计时是将根节点常驻内存的,也就是说查找某一键值的行记录时最多只需要1~3次磁盘I/0操作。

思考:为什么说B+树比B-树更适合实际应用中操作系统的文件索引和数据库索引?

1、B+树的磁盘读写代价更低
B+树的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对B树更小。如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说Io读写次数也就降低了。
2、B+树的查询效率更加稳定
由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。

思考:Hash索引和B+树索引的区别

我们之前讲到过B+树索引的结构,Hash索引结构和B+树的不同,因此在索引使用上也会有差别。
1、Hash 索引不能进行范围查询,而B+树可以。这是因为Hash索引指向的数据是无序的,而B+树的叶子节点是个有序的链表。
2、Hash索引不支持联合索引的最左侧原则(即联合索引的部分索引无法使用),而B+树可以。对于联合索引来说,Hash索引在计算Hash值的时候是将索引键合并后再一起计算Hash值,所以不会针对每个索引单独计算Hash值。因此如果用到联合索引的一个或者几个索引时,联合索引无法被利用。
3、Hash索引不支持ORDER BY排序,因为Hash索引指向的数据是无序的,因此无法起到排序优化的作用,而B+树索引数据是有序的,可以起到对该字段ORDER BY排序优化的作用。同理,我们也无法用Hash索引进行模糊查询,而B+树使用LIKE进行模糊查询的时候,LIKE后面后模糊查询(比如%结尾)的话就可以起到优化作用

4、InnoDB不支持哈希索引

7、R树

R-Tree在MySQL很少使用,仅支持geometry数据类型,支持该类型的存储引擎只有myisam、bdb、innodb、ndb、archive几种。举个R树在现实领域中能够解决的例子:查找2o英里以内所有的餐厅。如果没有R树你会怎么解决?一般情况下我们会把餐厅的坐标(xy)分为两个字段存放在数据库中,一个字段记录经度,另一个字段记录纬度。这样的话我们就需要遍历所有的餐厅获取其位置信息,然后计算是否满足要求。如果一个地区有100家餐厅的话,我们就要进行10o次位置计算操作了,如果应用到谷歌、百度地图这种超大数据库中,这种方法便必定不可行了。R树就很好的解决了这种高维空间搜索问题。它把B树的思想很好的扩展到了多维空间,采用了B树分割空间的思想,并在添加、删除操作时采用合并、分解结点的方法,保证树的平衡性。因此,R树就是一棵用来存储高维数据的平衡树。相对于B-Tree,R-Tree的优势在于范围查找。

索引/存储引擎 MyISAM iNNOdb Memory
R-Tree索引 支持 支持 不支持

8、小结

使用索引可以帮助我们从海量的数据中快速定位想要查找的数据,不过索引也存在一些不足,比如占用存储空间、降低数据库写操作的性能等,如果有多个索引还会增加索引选择的时间。当我们使用索引时,需要平衡索引的利(提升查询效率)和弊(维护索引所需的代价)。
在实际工作中,我们还需要基于需求和数据本身的分布情况来确定是否使用索引,尽管索引不是万能的,但数据量大的时候不使用索引是不可想象的,毕竟索引的本质,是帮助我们提升数据检索的效率。

这篇关于MySQL各类数据结构的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!