本文主要是介绍PyTorch搭建小实践,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
PyTorch搭建小实践
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
# self.conv1 = Conv2d(3, 32, 5, padding = 2)
# self.maxpool1 = MaxPool2d(2)
# self.conv2 = Conv2d(32, 32, 5, padding = 2)
# self.maxpool2 = MaxPool2d(2)
# self.conv3 = Conv2d(32, 64, 5, padding = 2)
# self.maxpool3 = MaxPool2d(2)
# self.flatten = Flatten()
# self.linear1 = Linear(1024, 64)
# self.linear2 = Linear(64, 10)
self.model1 = Sequential(
Conv2d(3, 32, 5, padding = 2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding = 2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding = 2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
# x = self.conv1(x)
# x = self.maxpool1(x)
# x = self.conv2(x)
# x = self.maxpool2(x)
# x = self.conv3(x)
# x = self.maxpool3(x)
# x = self.flatten(x)
# x = self.linear1(x)
# x = self.linear2(x)
x = self.model1(x)
return x
model = Model()
print(model)
input = torch.ones((64, 3, 32, 32))
output = model(input)
print(output.shape)
writer = SummaryWriter("logs_seq")
writer.add_graph(model, input)
writer.close()
这篇关于PyTorch搭建小实践的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!