MySql教程

MySQL单表查询(分组-筛选-过滤-去重-排序)

本文主要是介绍MySQL单表查询(分组-筛选-过滤-去重-排序),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

目录
  • 一:单表查询
    • 1.单表查询(前期准备)
    • 2.插入记录(写入数据)
    • 3.查询关键字
  • 二:查询关键字之where
    • 1.查询id大于等于3小于等于6的数据
    • 2.查询薪资是20000或者18000或者17000的数据
    • 3.模糊查询(like)
    • 4.查询员工姓名中包含o字母的员工姓名和薪资
    • 5.查询员工姓名为四个字符组成的员工姓名和薪资
    • 6.查询id小于3或者大于6的数据
    • 7.查询薪资不在20000,18000,17000范围的数据
    • 8.(查询岗位描述为空的员工名与岗位名) 针对null不能用等号,只能用is(才能查询到)
  • 三:查询关键字之group by分组
    • 1.什么是分组?
    • 2.应用场景
    • 3.如何对数据进行分组?
    • 4.实现分组
    • 5.聚合函数
    • 6.as语法(起别名)
  • 四:分组实战案例
    • 1.获取每个部门的最大薪资
    • 2.统计每个部门的人数
    • 3.获取每个部门的员工姓名(拼接)
  • 五;查询关键字之having过滤
    • 1.where与having区别
    • 2.having过滤案例
  • 六:查询关键字之distinct去重
    • 1.distinct去重
    • 2.对有重复的展示数据进行去重操作 一定要是重复的数据
  • 七:查询关键字之order by排序
    • 1.关键字order by 排序
    • 2.薪资由低到高排序(升序)
    • 3.薪资由高到低排序(降序)
    • 4.order by排序支持多个字段组合(第一个不行 就往后继续排)
    • 5.order by(多段排序 指定排序)

一:单表查询

1.单表查询(前期准备)
create table emp(
  id int primary key auto_increment,
  name varchar(20) not null,
  sex enum('male','female') not null default 'male',  # 用户如不输入 默认男的
  age int(3) unsigned not null default 28,  # 用户如不输入 默认28
  hire_date date not null,  # 雇佣日期
  post varchar(50),  # 职业
  post_comment varchar(100),  # 员工描述
  salary double(15,2),  # 薪水
  office int,  #一个部门一个屋子
  depart_id int  # 编号
);
2.插入记录(写入数据)
  • 三个部门:
    教学,销售,运营
insert into emp(name,sex,age,hire_date,post,salary,office,depart_id) values
('jason','male',18,'20170301','张江第一帅形象代言',7300.33,401,1), 
# 以下是教学部
('tom','male',78,'20150302','teacher',1000000.31,401,1),
('kevin','male',81,'20130305','teacher',8300,401,1),
('tony','male',73,'20140701','teacher',3500,401,1),
('owen','male',28,'20121101','teacher',2100,401,1),
('jack','female',18,'20110211','teacher',9000,401,1),
('jenny','male',18,'19000301','teacher',30000,401,1),
('sank','male',48,'20101111','teacher',10000,401,1),
('哈哈','female',48,'20150311','sale',3000.13,402,2),
#以下是销售部门
('呵呵','female',38,'20101101','sale',2000.35,402,2),
('西西','female',18,'20110312','sale',1000.37,402,2),
('乐乐','female',18,'20160513','sale',3000.29,402,2),
('拉拉','female',28,'20170127','sale',4000.33,402,2),
('僧龙','male',28,'20160311','operation',10000.13,403,3), 
#以下是运营部门
('程咬金','male',18,'19970312','operation',20000,403,3),
('程咬银','female',18,'20130311','operation',19000,403,3),
('程咬铜','male',18,'20150411','operation',18000,403,3),
('程咬铁','female',18,'20140512','operation',17000,403,3);

image

3.查询关键字
select
	控制查询表中的哪些字段对应的数据
from
	控制查询的表
  • 结合使用:
select * from t1;
作用:
    查询t1表内所以记录
        
select name from t1;
作用:
    查询t1表内name字段

二:查询关键字之where

关键字: where
作用:
	其实就是对数据进行筛选
1.查询id大于等于3小于等于6的数据
select id,name from emp where id >= 3 and id <= 6;
select id,name from emp where id between 3 and 6;  # 简写

between :选取介于两个值之间的数据范围内的值

2.查询薪资是20000或者18000或者17000的数据
select * from emp where salary = 20000 or salary = 18000 or salary = 17000;
select * from emp where salary in (20000,18000,17000);  # 简写
3.模糊查询(like)
模糊查询
关键字       like

模糊查询应用场景:
	当查询对象(名称不全)(数字不全)(不确定内容)时,可以使用模糊查询。

关键符号:
%		: 匹配任意个数的任意字符
_		: 匹配单个 个数的任意字符
4.查询员工姓名中包含o字母的员工姓名和薪资
select name,salary from emp where name like '%o%';
5.查询员工姓名为四个字符组成的员工姓名和薪资
select name,salary from emp where name like '____';
select name,salary from emp where char_length(name) = 4;
6.查询id小于3或者大于6的数据
select *  from emp where id not between 3 and 6;
7.查询薪资不在20000,18000,17000范围的数据
select * from emp where salary not in (20000,18000,17000);
8.(查询岗位描述为空的员工名与岗位名) 针对null不能用等号,只能用is(才能查询到)
select name,post from emp where post_comment = NULL;  # 查询为空!

select name,post from emp where post_comment is NULL;
select name,post from emp where post_comment is not NULL;

三:查询关键字之group by分组

1.什么是分组?
按照某个指定的条件将单个单个的数据分为一个个整体
  • 分组
咱班按照座位横向分组
咱班按照年龄分组
咱班按照省份分组
2.应用场景
求每个部门的平均薪资
求每个国家的人均GDP
求男女平均薪资
3.如何对数据进行分组?
关键字		group by 条件
4.实现分组
分组之后不再以单个个体为研究对象 也无法直接再获取单个个体的数据
研究对象应该是分组的整体
解析:
	分组之后获取是(部门整体)而不是(个体)

分组之后默认只能直接获取到分组的依据 其他字段数据无法直接获取
解析:
	使用(post/部门)进行分组的,使用slect只能以post来做分组

image

如果需要实现上述要求 还是修改sql_mode
set global sql_mode='only_full_group_by';
修改完后重新登录MySQL
exit

注意:
分组之后默认只能直接获取到分组的依据 其他字段数据无法直接获取

image

5.聚合函数
max()		: 求最大值
min()		: 求最小值
sum()		: 求合
count()		: 计数
avg()		: 平均值
# 上述聚合函数都是在分组之后使用 用于操作整体数据
6.as语法(起别名)
as语法在查看结果的时候可以给字段起别名
格式:
	select post as '部门',max(salary) as '最高薪资' from emp group by post;
省略as:
	select post '部门',max(salary) '最高薪资' from emp group by post;
	
注意:
	as可以省略但是为了语义更加明确建议不要省略

四:分组实战案例

1.获取每个部门的最大薪资
select post '部门',max(salary) '最高薪资' from emp group by post;

image

获取每个部门的最低薪资
select post '部门',min(salary) '最低薪资' from emp group by post;

统计每个部门的平均薪资(平均薪资不客观 客观表现(中位数))
select post '部门',avg(salary) '平均薪资' from emp group by post;

image

2.统计每个部门的人数
select post,count(id) from emp group by post;
count(id)	: count()只是计数 不是针对括号内的id字段

image

3.获取每个部门的员工姓名(拼接)
select post,group_concat(name) from emp group by post;

image

获取每个部门的员工姓名(分组之后拼接)
select post,group_concat(name,'|',salary) from emp group by post;

group_concat	用于分组之后获取分组以外的字段数据并支持拼接(间接拿)

image

获取员工姓名(分组之前拼接)
select id,concat(name,'|',salary) from emp;

concat			用于分组之前的拼接操作

image

获取多个字段(简写分隔符)分组前
select id,concat_ws('|',name,sex,salary,age) from emp;
concat_ws		当多个字段连接符相同的情况下推荐使用

image

五;查询关键字之having过滤

1.where与having区别
where与having都是用来筛选数据的
但是where用于分组之前的筛选
having用于分组之后的筛选
为了人为的区分开 我们将where用筛选来形容 having用过滤来形容
2.having过滤案例
统计各部门年龄在30岁以上的员工平均工资,并且保留平均工资大于10000的部门


将一个复杂的查询题拆分成多个简单的小题:

1.查看整张表的内容: select * from emp;

2.统计年龄在30岁以上的员工: select * from emp where age > 30;
   
3.给各个部门进行分组: select post from emp group by post;
    
4.计算各部门的平均薪资: select post,avg(salary) from emp group by post
    
5.各部门30岁以上的平均薪资: select post,avg(salary) from emp where age > 30 group by post;
    
6.使用having(分组之后)过滤,并且保留平均工资大于10000的部门:
select post,avg(salary) from emp where age > 30 group by post having avg(salary)>10000;

image

六:查询关键字之distinct去重

1.distinct去重
1.去重的前提示是存在一模一样的数据
2.如果存在主键肯定无法去重(主键是 非空且唯一)
2.对有重复的展示数据进行去重操作 一定要是重复的数据
select distinct id,age from emp;  # 无效果
select distinct id,age distinct from emp;  # 报错

select distinct age from emp;

image

七:查询关键字之order by排序

1.关键字order by 排序
order by默认是升序  默认的关键字是asc

升序	: asc
降序	: desc
2.薪资由低到高排序(升序)
select * from emp order by salary asc;  # 也可以不写 默认升序

image

3.薪资由高到低排序(降序)
select * from emp order by salary desc;  # 降序

image

4.order by排序支持多个字段组合(第一个不行 就往后继续排)
解析:
    第一个字段排序出现重复时,会从第二个字段排序进行升序比较
    
select * from emp order by age,salary;

image

5.order by(多段排序 指定排序)
作用:
可以多段排序,可以给多段排序指定(升序 或 降序)

select * from emp order by age asc,salary desc;

image

这篇关于MySQL单表查询(分组-筛选-过滤-去重-排序)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!