本文主要是介绍python pyecharts 数据可视化展示,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
from pyecharts import options as opts
from snapshot_selenium import snapshot as driver
def draw_chart(self, file, save_path):
"""
前端回放性能用例数据统计图
file: excel完整路径
save_path: html 和 png 保存目录
"""
data = pandas.read_excel(file, engine='openpyxl')
shape = data.shape
nrows = shape[0]
ncols = shape[1]
# print(f'当前总计行数:' + str(nrows)) # 获取行数
# print(f'当前总计列数:' + str(ncols)) # 获取列数
dt_dates = [] # 日期
dt_avg_fpss = [] # 平均帧率
dt_fat_fps_nums = [] # 肥胖帧个数
for i in range(nrows):
dt_date = data.iloc[i, 0]
dt_dates.append(dt_date)
dt_avg_fps = data.iloc[i, 1]
dt_avg_fpss.append(float(dt_avg_fps))
dt_fat_fps_num = data.iloc[i, 2]
dt_fat_fps_nums.append(float(dt_fat_fps_num))
# print(dt_fat_fps_nums)
line = (
Line(init_opts=opts.InitOpts(width='1850px', height='640px'))
.add_xaxis(dt_dates)
.add_yaxis("平均帧率", dt_avg_fpss)
.add_yaxis("肥胖帧个数", dt_fat_fps_nums)
.set_global_opts(title_opts=opts.TitleOpts(title="前端性能测试情况"))
)
line.set_series_opts(
markpoint_opts=opts.MarkPointOpts(
data=[
opts.MarkPointItem(type_='average', name='平均值'),
opts.MarkPointItem(type_='max', name='最大值'),
opts.MarkPointItem(type_='min', name='最小值')
]
)
)
# 设置标题等
line.set_global_opts(title_opts=opts.TitleOpts('前端性能跟踪变化曲线'),
# 显示工具箱
toolbox_opts=opts.ToolboxOpts(),
xaxis_opts=opts.AxisOpts(axislabel_opts={"rotate": 45, "interval": 0})
)
file_name = self.getTestCaseName(file)
html_name = file_name + ".html"
html_save_path = save_path + "\\" + html_name
line.render(html_save_path)
snapshot_save_path = save_path + "\\bar.png"
# 需要安装 snapshot-selenium 或者 snapshot-phantomjs
make_snapshot(driver, line.render(), snapshot_save_path)
# webbrowser.open(html_name)
这篇关于python pyecharts 数据可视化展示的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!