Java教程

java雪花算法

本文主要是介绍java雪花算法,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

使用场景 : 雪花算法能生成唯一18位id , 适用于生成订单id等 , 优点普通自增id , 可能通过id计算出当天或本月的销量 , 雪花算法可以避免这个问题

java代码实现

class SnowFlake {


// ==============================Fields===========================================
/** 开始时间截 (2015-01-01) */
private static final long twepoch = 1420041600000L;

/** 机器id所占的位数 */
private static final long workerIdBits = 5L;

/** 数据标识id所占的位数 */
private static final long datacenterIdBits = 5L;

/** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
private static final long maxWorkerId = -1L ^ (-1L << workerIdBits);

/** 支持的最大数据标识id,结果是31 */
private static final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);

/** 序列在id中占的位数 */
private static final long sequenceBits = 12L;

/** 机器ID向左移12位 */
private static final long workerIdShift = sequenceBits;

/** 数据标识id向左移17位(12+5) */
private static final long datacenterIdShift = sequenceBits + workerIdBits;

/** 时间截向左移22位(5+5+12) */
private static final long timestampLeftShift = sequenceBits + workerIdBits
        + datacenterIdBits;

/** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */
private  static final long sequenceMask = -1L ^ (-1L << sequenceBits);

/** 工作机器ID(0~31) */
private static long workerId;

/** 数据中心ID(0~31) */
private static long datacenterId;

/** 毫秒内序列(0~4095) */
private static long sequence = 0L;

/** 上次生成ID的时间截 */
private static long lastTimestamp = -1L;

// ==============================Constructors=====================================
/**
 * 构造函数
 *
 * @param workerId
 *            工作ID (0~31)
 * @param datacenterId
 *            数据中心ID (0~31)
 */
public SnowFlake(long workerId, long datacenterId) {
    if (workerId > maxWorkerId || workerId < 0) {
        throw new IllegalArgumentException(String.format(
                "worker Id can't be greater than %d or less than 0",
                maxWorkerId));
    }
    if (datacenterId > maxDatacenterId || datacenterId < 0) {
        throw new IllegalArgumentException(String.format(
                "datacenter Id can't be greater than %d or less than 0",
                maxDatacenterId));
    }
    SnowFlake.workerId = workerId;
    SnowFlake.datacenterId = datacenterId;
}

// ==============================Methods==========================================
/**
 * 获得下一个ID (该方法是线程安全的)
 *
 * @return SnowflakeId
 */
public static synchronized long nextId() {
    long timestamp = timeGen();

    // 如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
    if (timestamp < lastTimestamp) {
        throw new RuntimeException(
                String.format(
                        "Clock moved backwards.  Refusing to generate id for %d milliseconds",
                        lastTimestamp - timestamp));
    }

    // 如果是同一时间生成的,则进行毫秒内序列
    if (lastTimestamp == timestamp) {
        sequence = (sequence + 1) & sequenceMask;
        // 毫秒内序列溢出
        if (sequence == 0) {
            // 阻塞到下一个毫秒,获得新的时间戳
            timestamp = tilNextMillis(lastTimestamp);
        }
    }
    // 时间戳改变,毫秒内序列重置
    else {
        sequence = 0L;
    }

    // 上次生成ID的时间截
    lastTimestamp = timestamp;

    // 移位并通过或运算拼到一起组成64位的ID
    return ((timestamp - twepoch) << timestampLeftShift) //
            | (datacenterId << datacenterIdShift) //
            | (workerId << workerIdShift) //
            | sequence;
}

/**
 * 阻塞到下一个毫秒,直到获得新的时间戳
 *
 * @param lastTimestamp
 *            上次生成ID的时间截
 * @return 当前时间戳
 */
protected static long tilNextMillis(long lastTimestamp) {
    long timestamp = timeGen();
    while (timestamp <= lastTimestamp) {
        timestamp = timeGen();
    }
    return timestamp;
}

/**
 * 返回以毫秒为单位的当前时间
 *
 * @return 当前时间(毫秒)
 */
protected static long timeGen() {
    return System.currentTimeMillis();
}

public SnowFlake() {
    this(0, 0);
}

// 生成id
public static String getId() {
    return String.valueOf(SnowFlake.nextId());
}

// ==============================Test=============================================
/** 测试 */
public static void main(String[] args) {
    System.out.println(SnowFlake.nextId());
}

}

此段代码出处不详 , 如有侵权 , 请联系作者!

这篇关于java雪花算法的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!