二叉搜索树(也叫二叉排序树、二叉查找树,Binary Search Tree),或是空树,或是满足以下性质的二叉树:
由二叉搜索树性质,当对其进行中序遍历时,结果是递增序列。所有可以通过中序遍历的思想判断是否为一颗二叉搜索树。
public class IsBST { //静态全局变量,保存中序遍历中上一个节点的值 public static int preValue = Integer.MIN_VALUE; //递归中序遍历判断是否是二叉搜索树 public static boolean isBST(Node<Integer> head) { if (head == null) { return true; } boolean isLeftBst = isBST(head.left); if (!isLeftBst) { return false; } if (head.value <= preValue) { return false; } else { preValue = head.value; } return isBST(head.right); } //非递归中序遍历判断是否为二叉搜索树 public static boolean isBST2(Node<Integer> head) { if (head != null) { int preValue = Integer.MIN_VALUE; Stack<Node> stack = new Stack<>(); while (!stack.isEmpty() || head != null) { if (head != null) { stack.push(head); head = head.left; } else { head = stack.pop(); //若当前值比上一个值大则不是二叉搜索树 if (head.value <= preValue) { return false; } else { preValue = head.value; } head = head.right; } } } return true; } //方法三 树型DP(树型动态规划) public static boolean isBST3(Node<Integer> head) { return process(head).isBST; } public static class ReturnData { public boolean isBST; public int min; public int max; public ReturnData(boolean isBST, int min, int max) { this.isBST = isBST; this.min = min; this.max = max; } } public static ReturnData process(Node<Integer> x) { if (x == null) { return null; } ReturnData leftData = process(x.left); ReturnData rightData = process(x.right); int min = x.value; int max = x.value; if (leftData != null) { min = Math.min(min, leftData.min); max = Math.max(max, leftData.max); } if (rightData != null) { min = Math.min(min, rightData.min); max = Math.max(max, rightData.max); } boolean isBST = true; if (leftData != null && (!leftData.isBST || leftData.max >= x.value)) { isBST = false; } if (rightData != null && (!rightData.isBST || rightData.min <= x.value)) { isBST = false; } return new ReturnData(isBST, min, max); } }