目录
一、导出帧图像
二、判定相似度
1.均值哈希判定相似度
2.基于直方图相似度
三、截取视频一分钟
将视频以帧图像的方式呈现,逐帧导出图片
import os os.chdir("C:/Users/Administrator/AppData/Local/Programs/Python/Python37/Lib/site-packages") import cv2 import subprocess v_path="D:/Python/ghz.mp4" image_save="./pic" cap=cv2.VideoCapture(v_path) frame_count=cap.get(cv2.CAP_PROP_FRAME_COUNT) for i in range(int(frame_count)): _,img=cap.read() img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) cv2.imwrite("D:\Python\image{}.jpg".format(i),img)
运行结果示例:
对分帧结果判定相似度,并提取出相似度较大镜头作为分镜头。
import cv2 import numpy as np import matplotlib.pyplot as plt # 均值哈希算法 def aHash(img): # 缩放为8*8 plt.imshow(img) plt.axis('off') plt.show() img = cv2.resize(img, (8, 8)) plt.imshow(img) plt.axis('off') plt.show() # 转换为灰度图 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # s为像素和初值为0,hash_str为hash值初值为'' s = 0 hash_str = '' # 遍历累加求像素和 for i in range(8): for j in range(8): s = s + gray[i, j] # 求平均灰度 avg = s / 64 # 灰度大于平均值为1相反为0生成图片的hash值 for i in range(8): for j in range(8): if gray[i, j] > avg: hash_str = hash_str + '1' else: hash_str = hash_str + '0' return hash_str # Hash值对比 def cmpHash(hash1, hash2): n = 0 print(hash1) print(hash2) # hash长度不同则返回-1代表传参出错 if len(hash1)!=len(hash2): return -1 # 遍历判断 for i in range(len(hash1)): # 不相等则n计数+1,n最终为相似度 if hash1[i] != hash2[i]: n = n + 1 return n for i in range(549): img1=cv2.imread('./pic2/image{}.jpg'.format(i)) img2=cv2.imread('./pic2/image{}.jpg'.format(i+1)) hash1 = aHash(img1) hash2 = aHash(img2) n = cmpHash(hash1, hash2) if(n>22): print('均值哈希算法相似度:', n/64) cv2.imwrite('./shot/image{}.jpg'.format(i+1),img2)
运行结果:
(错误识别了3张)
import cv2 import numpy as np import matplotlib.pyplot as plt # 通过得到RGB每个通道的直方图来计算相似度 def classify_hist_with_split(image1, image2, size=(256, 256)): # 将图像resize后,分离为RGB三个通道,再计算每个通道的相似值 image1 = cv2.resize(image1, size) image2 = cv2.resize(image2, size) plt.imshow(image1) plt.show() plt.axis('off') plt.imshow(image2) plt.show() plt.axis('off') sub_image1 = cv2.split(image1) #cv2.split()拆分通道 sub_image2 = cv2.split(image2) sub_data = 0 for im1, im2 in zip(sub_image1, sub_image2): sub_data += calculate(im1, im2) sub_data = sub_data / 3 return sub_data # 计算单通道的直方图的相似值 def calculate(image1, image2): hist1 = cv2.calcHist([image1], [0], None, [256], [0.0, 255.0]) hist2 = cv2.calcHist([image2], [0], None, [256], [0.0, 255.0]) plt.plot(hist1, color="r") plt.plot(hist2, color="g") plt.show() # 计算直方图的重合度 degree = 0 for i in range(len(hist1)): if hist1[i] != hist2[i]: degree = degree + (1 - abs(hist1[i] - hist2[i]) / max(hist1[i], hist2[i])) else: degree = degree + 1 #统计相似 degree = degree / len(hist1) return degree for i in range(549): img1=cv2.imread('./pic2/image{}.jpg'.format(i)) img2=cv2.imread('./pic2/image{}.jpg'.format(i+1)) n = classify_hist_with_split(img1,img2) if(n<0.6): cv2.imwrite('./shot2/image{}.jpg'.format(i+1),img2)
运行结果:
(少识别了两张)
使用cmd运行下列代码:
ffmpeg -i input.mp4 -vcodec copy -acodec copy -ss 00:00:00 -to 00:01:00 cut.mp4 -y