(1)创建实时同步数据库
create database flink_gmall
(2)将Mysql.sql文件导入到Mysql中
source /opt/data/Mysql.sql
(3)查看数据库表
show tables;
(1)在mysql中对需要进行实时数据监测的库开启binlog
sudo vim /etc/my.cnf #添加数据库的binlog server-id=1 log-bin=mysql-bin binlog_format=row binlog-do-db=flink_gmall #重启MySQL服务 sudo systemctl restart mysqld
(2)查询生成日志
cd /var/lib/mysql
(1)创建项目
目录 | 作用 |
---|---|
app | 产生各层的flink任务 |
bean | 数据对象 |
common | 公共常量 |
utils | 工具类 |
(2)编写ODS代码
bin/kafka-topics.sh --zookeeper hadoop102:2181/kafka --create --replication-factor 3 --partitions 6 --topic ods_behavior_db
package com.lhw.utils; import org.apache.flink.api.common.serialization.SimpleStringSchema; import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer; public class MyKafkaUtil { public static FlinkKafkaProducer<String> getKafkaProducer(String topic){ return new FlinkKafkaProducer<String>("hadoop102:9092,hadoop103:9092,hadoop104:9092",topic,new SimpleStringSchema()); } }
package com.lhw.app.function; import com.alibaba.fastjson.JSONObject; import com.ververica.cdc.debezium.DebeziumDeserializationSchema; import io.debezium.data.Envelope; import org.apache.flink.api.common.typeinfo.BasicTypeInfo; import org.apache.flink.api.common.typeinfo.TypeInformation; import org.apache.flink.util.Collector; import org.apache.kafka.connect.data.Field; import org.apache.kafka.connect.data.Schema; import org.apache.kafka.connect.data.Struct; import org.apache.kafka.connect.source.SourceRecord; import java.util.List; public class CustomerDeserialization implements DebeziumDeserializationSchema<String> { /** * 封装的数据格式 * { * "database":"", * "tableName":"", * "before":{"id":"","tm_name":""....}, * "after":{"id":"","tm_name":""....}, * "type":"c u d", * //"ts":156456135615 * } */ @Override public void deserialize(SourceRecord sourceRecord, Collector<String> collector) throws Exception { //1.创建JSON对象用于存储最终数据 JSONObject result = new JSONObject(); //2.获取库名&表名 String topic = sourceRecord.topic(); String[] fields = topic.split("\\."); String database = fields[1]; String tableName = fields[2]; Struct value = (Struct) sourceRecord.value(); //3.获取"before"数据 Struct before = value.getStruct("before"); JSONObject beforeJson = new JSONObject(); if (before != null) { Schema beforeSchema = before.schema(); List<Field> beforeFields = beforeSchema.fields(); for (Field field : beforeFields) { Object beforeValue = before.get(field); beforeJson.put(field.name(), beforeValue); } } //4.获取"after"数据 Struct after = value.getStruct("after"); JSONObject afterJson = new JSONObject(); if (after != null) { Schema afterSchema = after.schema(); List<Field> afterFields = afterSchema.fields(); for (Field field : afterFields) { Object afterValue = after.get(field); afterJson.put(field.name(), afterValue); } } //5.获取操作类型 CREATE UPDATE DELETE Envelope.Operation operation = Envelope.operationFor(sourceRecord); String type = operation.toString().toLowerCase(); if ("create".equals(type)) { type = "insert"; } //6.将字段写入JSON对象 result.put("database", database); result.put("tableName", tableName); result.put("before", beforeJson); result.put("after", afterJson); result.put("type", type); //7.输出数据 collector.collect(result.toJSONString()); } @Override public TypeInformation<String> getProducedType() { return BasicTypeInfo.STRING_TYPE_INFO; } }
package com.lhw.app.ods; import com.lhw.app.function.CustomerDeserialization; import com.lhw.utils.MyKafkaUtil; import com.ververica.cdc.connectors.mysql.MySqlSource; import com.ververica.cdc.connectors.mysql.table.StartupOptions; import com.ververica.cdc.debezium.DebeziumSourceFunction; import com.ververica.cdc.debezium.StringDebeziumDeserializationSchema; import org.apache.flink.runtime.state.filesystem.FsStateBackend; import org.apache.flink.streaming.api.CheckpointingMode; import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import java.time.Duration; public class MysqlFlinkCDC { public static void main(String[] args) throws Exception { // 1、获取执行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(2); // // 2、开启CK并指定状态后端为FS // // 2.1、制定存储ck地址 // env.setStateBackend(new FsStateBackend("hdfs://hadoop102:8020/flinkCDC")); // // 2.2、指定ck储存触发间隔时间 // env.enableCheckpointing(5000); // // 2.3、指定ck模式 // env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE); // // 2.4、指定超时时间 // env.getCheckpointConfig().setAlignmentTimeout(Duration.ofSeconds(1000)); // // 2.5、CK最小触发间隔时间 // env.getCheckpointConfig().setMaxConcurrentCheckpoints(2000); // 3、通过FlinkCDC构建SourceFunction DebeziumSourceFunction<String> mysqlSource = MySqlSource.<String>builder() .hostname("hadoop102") .port(3306) .databaseList("flink_gmall") // set captured database .tableList("flink_gmall.base_category1") // 如果不添加该参数,则消费指定数据库中的所有表 .username("root") .password("123456") .startupOptions(StartupOptions.initial()) .deserializer(new CustomerDeserialization()) .build(); // 4、使用CDC Source方式从mysql中读取数据 DataStreamSource<String> mysqlDS = env.addSource(mysqlSource); // 5、打印数据并将数据输入到kafka mysqlDS.print(); String sinkTopic = "ods_behavior_db"; mysqlDS.addSink(MyKafkaUtil.getKafkaProducer(sinkTopic)); // 5、执行任务 env.execute("flinkcdcmysql3"); } }
(3)运行测试
bin/kafka-console-consumer.sh \--bootstrap-server hadoop102:9092 --topic ods_behavior_db
(4)检测变化
#新增数据 insert into flink_gmall.base_category1 values(18,"奢侈品"); #修改数据 update flink_gmall.base_category1 set name="轻奢品" where id = 18; #删除数据 delete from flink_gmall.base_category1 where id=18;
(5)模拟数据生成(检测整个库的变化)
①文件上传并运行
#文件上传 rz application.properties gmall2020-mock-db-2020-11-27.jar
②修改配置文件
修改对应的库名,用户名&密码
③运行数据生成项目文件
java -jar gmall2020-mock-db-2020-11-27.jar
④IDEA检测变化
⑤kafka消费数据变化
(1)打包
(2)上传脚本并运行
bin/flink run -m hadoop102:8081 -c com.lhw.MysqlFlinkCDC /opt/data/gmall-flinkcdc-mysql.jar
暂停