MySql教程

第二章 数据采集模块之业务数据实时采集(Mysql)

本文主要是介绍第二章 数据采集模块之业务数据实时采集(Mysql),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

1、Mysql数据准备

(1)创建实时同步数据库

create database flink_gmall

(2)将Mysql.sql文件导入到Mysql中

source /opt/data/Mysql.sql

在这里插入图片描述

(3)查看数据库表

show tables;

在这里插入图片描述

2、开启数据库的binlog

(1)在mysql中对需要进行实时数据监测的库开启binlog

sudo vim /etc/my.cnf

#添加数据库的binlog
server-id=1
log-bin=mysql-bin
binlog_format=row
binlog-do-db=flink_gmall


#重启MySQL服务
sudo systemctl restart mysqld

在这里插入图片描述

(2)查询生成日志

cd /var/lib/mysql

在这里插入图片描述

1.2.3、编写脚本

(1)创建项目

在这里插入图片描述

  • 项目目录详述
目录作用
app产生各层的flink任务
bean数据对象
common公共常量
utils工具类

(2)编写ODS代码

  • 创建topic
bin/kafka-topics.sh --zookeeper hadoop102:2181/kafka --create --replication-factor 3 --partitions 6 --topic ods_behavior_db
  • 工具类MyKafkaUtil
package com.lhw.utils;

import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;

public class MyKafkaUtil {
    public static FlinkKafkaProducer<String> getKafkaProducer(String topic){
        return new FlinkKafkaProducer<String>("hadoop102:9092,hadoop103:9092,hadoop104:9092",topic,new SimpleStringSchema());
    }
}
  • 反序列化函数CustomerDeserialization
package com.lhw.app.function;

import com.alibaba.fastjson.JSONObject;
import com.ververica.cdc.debezium.DebeziumDeserializationSchema;
import io.debezium.data.Envelope;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.util.Collector;
import org.apache.kafka.connect.data.Field;
import org.apache.kafka.connect.data.Schema;
import org.apache.kafka.connect.data.Struct;
import org.apache.kafka.connect.source.SourceRecord;

import java.util.List;

public class CustomerDeserialization implements DebeziumDeserializationSchema<String> {

    /**
     * 封装的数据格式
     * {
     * "database":"",
     * "tableName":"",
     * "before":{"id":"","tm_name":""....},
     * "after":{"id":"","tm_name":""....},
     * "type":"c u d",
     * //"ts":156456135615
     * }
     */
    @Override
    public void deserialize(SourceRecord sourceRecord, Collector<String> collector) throws Exception {

        //1.创建JSON对象用于存储最终数据
        JSONObject result = new JSONObject();

        //2.获取库名&表名
        String topic = sourceRecord.topic();
        String[] fields = topic.split("\\.");
        String database = fields[1];
        String tableName = fields[2];

        Struct value = (Struct) sourceRecord.value();
        //3.获取"before"数据
        Struct before = value.getStruct("before");
        JSONObject beforeJson = new JSONObject();
        if (before != null) {
            Schema beforeSchema = before.schema();
            List<Field> beforeFields = beforeSchema.fields();
            for (Field field : beforeFields) {
                Object beforeValue = before.get(field);
                beforeJson.put(field.name(), beforeValue);
            }
        }

        //4.获取"after"数据
        Struct after = value.getStruct("after");
        JSONObject afterJson = new JSONObject();
        if (after != null) {
            Schema afterSchema = after.schema();
            List<Field> afterFields = afterSchema.fields();
            for (Field field : afterFields) {
                Object afterValue = after.get(field);
                afterJson.put(field.name(), afterValue);
            }
        }

        //5.获取操作类型  CREATE UPDATE DELETE
        Envelope.Operation operation = Envelope.operationFor(sourceRecord);
        String type = operation.toString().toLowerCase();
        if ("create".equals(type)) {
            type = "insert";
        }

        //6.将字段写入JSON对象
        result.put("database", database);
        result.put("tableName", tableName);
        result.put("before", beforeJson);
        result.put("after", afterJson);
        result.put("type", type);

        //7.输出数据
        collector.collect(result.toJSONString());

    }

    @Override
    public TypeInformation<String> getProducedType() {
        return BasicTypeInfo.STRING_TYPE_INFO;
    }
}
  • FlinkCDC的mainclass
package com.lhw.app.ods;

import com.lhw.app.function.CustomerDeserialization;
import com.lhw.utils.MyKafkaUtil;
import com.ververica.cdc.connectors.mysql.MySqlSource;
import com.ververica.cdc.connectors.mysql.table.StartupOptions;
import com.ververica.cdc.debezium.DebeziumSourceFunction;
import com.ververica.cdc.debezium.StringDebeziumDeserializationSchema;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import java.time.Duration;

public class MysqlFlinkCDC {
    public static void main(String[] args) throws Exception {
        // 1、获取执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(2);

//        // 2、开启CK并指定状态后端为FS
//        // 2.1、制定存储ck地址
//        env.setStateBackend(new FsStateBackend("hdfs://hadoop102:8020/flinkCDC"));
//        // 2.2、指定ck储存触发间隔时间
//        env.enableCheckpointing(5000);
//        // 2.3、指定ck模式
//        env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
//        // 2.4、指定超时时间
//        env.getCheckpointConfig().setAlignmentTimeout(Duration.ofSeconds(1000));
//        // 2.5、CK最小触发间隔时间
//        env.getCheckpointConfig().setMaxConcurrentCheckpoints(2000);

        // 3、通过FlinkCDC构建SourceFunction
        DebeziumSourceFunction<String> mysqlSource = MySqlSource.<String>builder()
                .hostname("hadoop102")
                .port(3306)
                .databaseList("flink_gmall")  // set captured database
                .tableList("flink_gmall.base_category1") // 如果不添加该参数,则消费指定数据库中的所有表
                .username("root")
                .password("123456")
                .startupOptions(StartupOptions.initial())
                .deserializer(new CustomerDeserialization())
                .build();
        // 4、使用CDC Source方式从mysql中读取数据
        DataStreamSource<String> mysqlDS = env.addSource(mysqlSource);

        // 5、打印数据并将数据输入到kafka
        mysqlDS.print();
        String sinkTopic = "ods_behavior_db";
        mysqlDS.addSink(MyKafkaUtil.getKafkaProducer(sinkTopic));

        // 5、执行任务
        env.execute("flinkcdcmysql3");
    }
}

(3)运行测试

  • 本地IDEA打印输出

在这里插入图片描述

  • kafka集群消费
bin/kafka-console-consumer.sh \--bootstrap-server hadoop102:9092 --topic ods_behavior_db

在这里插入图片描述

(4)检测变化

  • Mysql进行增改删工作
#新增数据
insert into flink_gmall.base_category1 values(18,"奢侈品");

#修改数据
update flink_gmall.base_category1 set name="轻奢品" where id = 18;

#删除数据
delete from flink_gmall.base_category1 where id=18;
  • IDEA检测变化

在这里插入图片描述

  • Kakfa集群检测变化

在这里插入图片描述

(5)模拟数据生成(检测整个库的变化)

①文件上传并运行

#文件上传
rz 
	application.properties
	gmall2020-mock-db-2020-11-27.jar

②修改配置文件

修改对应的库名,用户名&密码

在这里插入图片描述

③运行数据生成项目文件

java -jar gmall2020-mock-db-2020-11-27.jar

在这里插入图片描述

④IDEA检测变化

在这里插入图片描述

⑤kafka消费数据变化

在这里插入图片描述

1.2.4、打包部署

(1)打包

在这里插入图片描述

(2)上传脚本并运行

bin/flink run -m hadoop102:8081 -c com.lhw.MysqlFlinkCDC /opt/data/gmall-flinkcdc-mysql.jar 
  • 查看运行结果
暂停
这篇关于第二章 数据采集模块之业务数据实时采集(Mysql)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!