Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced binary tree is defined as: a binary tree in which the left and right subtrees of every node differ in height by no more than 1.
Example1:
Input: root = [3,9,20,null,null,15,7] Output: true
Example2:
Input: root = [1,2,2,3,3,null,null,4,4] Output: false
Example3:
Input: root = [] Output: true
Constraints:
所谓的平衡二叉树,就是每一棵树左右子树的高度差小于1。这道题可以用递归,但是判断当前树是不是平衡,就需要高度的信息,所以递归的时候要返回这个信息。除此之外,每棵子树是不是平衡的信息也要返回,因为有的时候在底层不平衡,但是上层的左右子树差是1。
注意:
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ public class Info { boolean isBalanced; int hight; Info(boolean isBalanced, int hight){ this.isBalanced = isBalanced; this.hight = hight; } } class Solution { public boolean isBalanced(TreeNode root) { if (root == null) { return true; } Info rst = helper(root); return rst.isBalanced; } private Info helper(TreeNode root) { if (root == null) { return new Info(true, 0); } Info l = helper(root.left); Info r = helper(root.right); return new Info(l.isBalanced && r.isBalanced && (Math.abs(l.hight - r.hight) < 2), Math.max(l.hight, r.hight) + 1); } }