本篇博文将实现基于python的运动物体检测。
opencv-python
在计算机视觉中,我们把运动看作是环境的变化。为了计算转换,我们必须有一个背景图像来比较。所以,我们在程序的开头保存第一个图像。
# Converting the image to GrayScale gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray,(21,21),0) # Saving the First Frame if first_frame is None: first_frame = gray continue
然后,我们将后续帧与保存的第一帧进行比较,以观察差异。计算完差异后,我们可以应用阈值将其转换为黑白图像。
#Calculates difference to detect motion delta_frame = cv2.absdiff(first_frame, gray) #Applies Threshold and converts it to black & white image thresh_delta = cv2.threshold(delta_frame, 30, 255, cv2.THRESH_BINARY)[1] thresh_delta = cv2.dilate(thresh_delta, None, iterations=0) #finding contours on the white portion(made by the threshold) cnts,_ = cv2.findContours(thresh_delta.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
最后一个命令在该黑白图像中查找轮廓,并给出用于创建边界框的坐标,如上面的视频所示。使用运动检测的好处:
它不会保存无用的空闲镜头。因此,减少了其他算法的工作量,因为不会保存空闲帧进行处理。
它需要较少的计算,并且适合实时实施。
给定的因素导致轮廓检测不理想,运动检测的幼稚方法会在执行开始时为所有比较保存第一帧。不好有几个原因:
白天的照明条件可能会改变。
天气变化。
执行时相机被遮挡。
解决方案:在没有运动的情况下,可以通过定期定期更新保存的帧来轻松解决此问题。
# Number of idle frames to pass before changing the saved frame # for further comparisions FRAMES_TO_PERSIST = 1000
然后将其放在while循环中:
#increment delay counter for every idle frame delay_counter += 1 #Update the saved first frame if delay_counter > FRAMES_TO_PERSIST: delay_counter = 0 first_frame = next_frame
当检测到运动时,将delay_counter设置为零,微小的物体(例如蜜蜂和昆虫)和通常不必要的轻微不必要的运动被存储起来。解决方案:如片段所示,我们应该在该区域设置一个阈值。
# Minimum boxed area(in pixels) for a detected motion to count as actual motion # Use to filter out noise or small objects MIN_SIZE_FOR_MOVEMENT = 2000
然后在while循环中放置一个if语句:
#Checks if the area is big enough to be considered as motion. if cv2.contourArea(c) > MIN_SIZE_FOR_MOVEMENT: #Your code
import cv2 import numpy as np import time class VideoReader(object): def __init__(self, file_name): self.file_name = file_name try: # OpenCV needs int to read from webcam self.file_name = int(file_name) except ValueError: pass def __iter__(self): self.cap = cv2.VideoCapture(self.file_name) if not self.cap.isOpened(): raise IOError('Video {} cannot be opened'.format(self.file_name)) return self def __next__(self): was_read, img = self.cap.read() if not was_read: raise StopIteration return img if __name__ == '__main__': frame_provider = VideoReader(0) FRAMES_TO_PERSIST = 50 MIN_SIZE_FOR_MOVEMENT = 200 delay_counter = 0 first_frame = None delay = 1 for frame in frame_provider: start = time.time() # Converting the image to GrayScale gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (21, 21), 0) # Saving the First Frame if first_frame is None: first_frame = gray continue # Calculates difference to detect motion delta_frame = cv2.absdiff(first_frame, gray) # Applies Threshold and converts it to black & white image thresh_delta = cv2.threshold(delta_frame, 30, 255, cv2.THRESH_BINARY)[1] thresh_delta = cv2.dilate(thresh_delta, None, iterations=0) # finding contours on the white portion(made by the threshold) cnts, _ = cv2.findContours(thresh_delta.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if np.sum(np.where(thresh_delta > 0, 1, 0)) < MIN_SIZE_FOR_MOVEMENT: thresh_delta = np.zeros_like(gray) end = time.time() seconds = end - start # Calculate frames per second print(f"seconds: {seconds}") fps = 1 / seconds imgVis = np.dstack([thresh_delta for _ in range(3)]) cv2.putText(imgVis, f"FPS: {int(fps)}", (50, 50), cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 255)) cv2.imshow('Lightweight Human Pose Estimation Python Demo', imgVis) key = cv2.waitKey(delay) if key == 27: # esc continue elif key == 112: # 'p' if delay == 1: delay = 0 else: delay = 1 # increment delay counter for every idle frame delay_counter += 1 # Update the saved first frame if delay_counter > FRAMES_TO_PERSIST: delay_counter = 0 first_frame = gray