思路:
首先要知道几个定义
公平组合游戏(ICG)
(1)由两名玩家交替行动
(2)在游戏进行的任意时刻,可以执行的合法行动与轮到哪位玩家无关
(3)轮流走,当一个玩家不能走时游戏结束
(4)游戏不能区分玩家的身份,例如黑白棋就是不行的
特征
给定初始局势,指定先手玩家,如果双方都采取最优策略,那么获胜者已经确定了,也就是说ICG问题存在必胜策略
必胜状态和必败状态
必胜状态:先手进行某一个操作,留给后手是一个必败状态时,对于先手来说是一个必胜状态。即先手可以走到某一个必败状态。
必败状态:先手无论如何操作,留给后手都是一个必胜状态时,对于先手来说是一个必败状态。即先手走不到任何一个必败状态。
结论
假设n堆石子,石子数目分别是a1,a2,…,an,如果a1⊕a2⊕…⊕an≠0,先手必胜;否则先手必
败。
本题思路:
本题的主要思路就是代结论,假设n堆石子,石子数目分别是a1,a2,…,an,如果a1⊕a3⊕…⊕an≠0,先手必胜;否则先手必败。
即:所有奇数级台阶上的石子异或不为0的话,先手必胜;否则先手必败
代码实现思路:
1、输入n堆石头
2、如果a1⊕a3⊕…⊕an≠0,先手必胜;否则先手必败。
注:奇数&1为1,偶数&1为0
---------------------------------------------------解法---------------------------------------------------
#include <iostream> #include <algorithm> using namespace std; const int N = 100010; int main() { int n; scanf("%d", &n); int res = 0; for (int i = 1; i <= n; i ++ ) { int x; scanf("%d", &x); // 所有奇数的异或不为0,则先手必胜;否则先手必败 if (i & 1) res ^= x; } if (res) puts("Yes"); else puts("No"); return 0; }
博弈论Nim游戏模板题,理解思想并背下代码。