Python教程

拟牛顿法(Python实现)

本文主要是介绍拟牛顿法(Python实现),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

拟牛顿法(Python实现)

使用拟牛顿法(BFGS和DFP),分别使用Armijo准则和Wolfe准则来求步长

求解方程

\(f(x_1,x_2)=(x_1^2-2)^4+(x_1-2x_2)^2\)的极小值

import numpy as np


# import tensorflow as tf


def gfun(x):  # 梯度
    # x = tf.Variable(x, dtype=tf.float32)
    # with tf.GradientTape() as tape:
    #     tape.watch(x)
    #     z = fun(x)
    # return tape.gradient(z, x).numpy()  # 这里使用TensorFlow来求梯度,直接手算梯度返回也行
    return np.array([4 * (x[0] - 2) ** 3 + 2 * (x[0] - 2 * x[1]), -4 * (x[0] - 2 * x[1])]).reshape(len(x), 1)


def fun(x):  # 函数
    return (x[0] - 2) ** 4 + (x[0] - 2 * x[1]) ** 2


def bfgs_armijo(x0):
    '''秩1的基于armijo搜索的拟牛顿算法'''
    maxk = 5000
    rho = .55
    sigma = .4
    epsilon = 1e-5
    k = 0
    n = len(x0)
    Hk = np.eye(n)
    while k < maxk:
        gk = gfun(x0)
        if np.linalg.norm(gk) < epsilon:
            break
        dk = -Hk @ gk
        m = 0
        mk = 0
        while m < 20:  # 使用Armijo搜索(非精确线搜索)
            if fun(x0 + rho ** m * dk) < fun(x0) + sigma * rho ** m * gk.T @ dk:
                mk = m
                break
            m += 1
        x = x0 + rho ** mk * dk
        sk = x - x0
        yk = gfun(x) - gk
        Hk = Hk + (sk - Hk @ yk) @ (sk - Hk @ yk).T / ((sk - Hk @ yk).T @ yk)
        k += 1
        x0 = x
    return x0, fun(x0), k


def bfgs_wolfe(x0):
    '''基于wolfe搜索的秩1的拟牛顿算法'''
    maxk = 5000
    epsilon = 1e-5
    k = 0
    n = len(x0)
    Hk = np.eye(n)
    while k < maxk:
        gk = gfun(x0)
        if np.linalg.norm(gk) < epsilon:
            break
        dk = -Hk @ gk
        rho = 0.4
        sigma = 0.5
        a = 0
        b = np.inf
        alpha = 1
        while True:  # 使用Wolfe搜索
            if not ((fun(x0) - fun(x0 + alpha * dk)) >= (-rho * alpha * gfun(x0).T @ dk)):
                b = alpha
                alpha = (a + alpha) / 2
                continue
            if not (gfun(x0 + alpha * dk).T @ dk >= sigma * gfun(x0).T @ dk):
                a = alpha
                alpha = np.min([2 * alpha, (alpha + b) / 2])
                continue
            break

        x = x0 + alpha * dk
        sk = x - x0
        yk = gfun(x) - gk
        Hk = Hk + (sk - Hk @ yk) @ (sk - Hk @ yk).T / ((sk - Hk @ yk).T @ yk)
        k += 1
        x0 = x
    return x0, fun(x0), k


def dfp_wolfe(x0):
    '''基于armijo搜索的秩2的拟牛顿法
    当采用精确线搜索时,矩阵序列Hk的正定性条件sk.T@yk>0可以被满足
    一般来说,armijo准则不能满足这一条件需要修正一个条件:yk.T@sk>0
    '''
    maxk = 5000
    epsilon = 1e-5
    k = 0
    n = len(x0)
    Hk = np.eye(n)  # 初始化Hk为单位阵
    while k < maxk:
        gk = gfun(x0)
        if np.linalg.norm(gk) < epsilon:  # 迭代结束条件
            break
        dk = -Hk @ gk
        rho = 0.4
        sigma = 0.5
        a = 0
        b = np.inf
        alpha = 1
        while True:
            if not ((fun(x0) - fun(x0 + alpha * dk)) >= (-rho * alpha * gfun(x0).T @ dk)):
                b = alpha
                alpha = (a + alpha) / 2
                continue
            if not (gfun(x0 + alpha * dk).T @ dk >= sigma * gfun(x0).T @ dk):
                a = alpha
                alpha = np.min([2 * alpha, (alpha + b) / 2])
                continue
            break

        x = x0 + alpha * dk
        sk = x - x0
        yk = gfun(x) - gk
        Hk = Hk - (Hk @ yk @ yk.T @ Hk) / (yk.T @ Hk @ yk) + (sk @ sk.T) / (sk.T @ yk)
        k += 1
        x0 = x
    return x0, fun(x0), k


def dfp_armijo(x0):
    '''基于armijo搜索的秩2的拟牛顿法
    当采用精确线搜索时,矩阵序列Hk的正定性条件sk.T@yk>0可以被满足
    一般来说,armijo准则不能满足这一条件需要修正一个条件:yk.T@sk>0
    '''
    maxk = 5000
    rho = .55
    sigma = .4
    epsilon = 1e-5
    k = 0
    n = len(x0)
    Hk = np.eye(n)
    while k < maxk:
        gk = gfun(x0)
        if np.linalg.norm(gk) < epsilon:
            break
        dk = -Hk @ gk
        m = 0
        mk = 0
        while m < 20:  # 使用Armijo搜索(非精确线搜索)
            if fun(x0 + rho ** m * dk) < fun(x0) + sigma * rho ** m * gk.T @ dk:
                mk = m
                break
            m += 1
        x = x0 + rho ** mk * dk
        sk = x - x0
        yk = gfun(x) - gk
        if sk.T @ yk > 0:
            Hk = Hk - (Hk @ yk @ yk.T @ Hk) / (yk.T @ Hk @ yk) + (sk @ sk.T) / (sk.T @ yk)
        k += 1
        x0 = x
    return x0, fun(x0), k


if __name__ == '__main__':
    x0 = np.array([[0], [0]])
    x0, val, k = bfgs_armijo(x0)  # BFGS使用armijo准则
    print(f'近似最优点:\n{x0}\n迭代次数:{k}\n目标函数值:{val.item()}')
    x0 = np.array([[0], [0]])
    x0, val, k = bfgs_wolfe(x0)  # BFGS使用wolfe准则
    print(f'近似最优点:\n{x0}\n迭代次数:{k}\n目标函数值:{val.item()}')
    x0 = np.array([[0], [0]])
    x0, val, k = dfp_armijo(x0)  # DFP使用armijo准则
    print(f'近似最优点:\n{x0}\n迭代次数:{k}\n目标函数值:{val.item()}')
    x0 = np.array([[0], [0]])
    x0, val, k = dfp_wolfe(x0)  # DFP使用wolfe准则
    print(f'近似最优点:\n{x0}\n迭代次数:{k}\n目标函数值:{val.item()}')

运行结果

这篇关于拟牛顿法(Python实现)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!