\(\frac{1}{n^k} \sum\frac{k!}{\prod b_i!} \prod (a_i+b_i)\),其中 \(\sum b_i=k\)
构造生成函数 \(f_i=\sum \frac{a_i+j}{j!}x^j=e^x(a_i+x)\),欲求式为 \(k![x^k]\prod f_i=k![x^k] e^{nx}\prod (a_i+x)\)
预处理 \(g_i\) 为任选 \(i\) 个乘积的和,原式为 \(\frac{1}{n^k} k!\sum\limits_{i=0}^n g_{n-i} n^{k-i} \frac{1}{(k-i)!}=\sum\limits_{i=0}^n g_{n-i} \frac{k^{\underline i}}{n^i}\)
#include<bits/stdc++.h> using namespace std; #define inf 1e9 const int maxn=2e5+10; const int mod=998244353; inline int read(){ int x=0,f=1;char c=getchar(); while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();} while(c>='0'&&c<='9'){x=(x<<1)+(x<<3)+c-'0';c=getchar();} return x*f; } const int N=2e3+5; int n,k,a[N],dp[N][N],ans; inline int ksm(int x,int y){ int res=1; while(y){ if(y&1)res=1ll*res*x%mod; x=1ll*x*x%mod;y>>=1; }return res; } int main(){ n=read(),k=read(); for(int i=1;i<=n;i++)a[i]=read(); dp[0][0]=1; for(int i=1;i<=n;i++) for(int j=0;j<=i;j++) dp[i][j]=(dp[i-1][j]+1ll*a[i]*dp[i-1][j-1])%mod; int K=ksm(n,mod-2); for(int i=0,k1=1,k2=1;i<=n;i++){ ans=(ans+1ll*dp[n][n-i]*k1%mod*k2)%mod; k1=1ll*k1*K%mod;k2=1ll*k2*(k-i)%mod; }printf("%d\n",ans); return 0; }